Analytical and numerical study of Weyl and Dirac Quantum Walks

5th International Conference on New Frontiers in Physics Orthodox Academy of Crete, Kolymbari, Crete, Greece July, 9th 2016

Outline:

1. Quantum Walk model
2. Dirac and Weyl OWs
3. Path-integral solution

Authors:
Giacomo Mauro D'Ariano
Nicola Mosco
Paolo Perinotti
Alessandro Tosini

Quantum Walks

Quantum Walks

Random Walk:

go right or left with some probability

Quantum Walks

Random Walk: go right or left with some probability

Y. Aharonov, L. Davidovich, and N.

Zagury, Phys. Rev. A 48(2):1687-1690 (1993)

Quantum Walks on graphs

Quantum Walks on graphs

D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Proceedings of the thirty-third annual ACM symposium on Theory of computing - STOC '01 (2001)

Quantum Walks on graphs

$$
\begin{aligned}
& \mathcal{H}=\bigoplus_{x \in \Lambda} \mathcal{H}_{x} \cong \ell^{2}(\Lambda) \otimes \mathbb{C}^{s} \\
& U: \mathcal{H}_{x} \longrightarrow \bigoplus_{y \in \mathcal{N}_{x}} \mathcal{H}_{y} \\
& \text { Unitary local evolution }
\end{aligned}
$$

D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Proceedings of the thirty-third annual ACM symposium on Theory of computing - STOC '01 (2001)

Quantum Walks on graphs

Finite neighbourhood scheme \mathcal{N}_{x}

$$
\begin{aligned}
& \mathcal{H}=\bigoplus_{x \in \Lambda} \mathcal{H}_{x} \cong \ell^{2}(\Lambda) \otimes \mathbb{C}^{s} \\
& U: \mathcal{H}_{x} \longrightarrow \bigoplus_{y \in \mathcal{N}_{x}} \mathcal{H}_{y} \\
& \text { Unitary local evolution }
\end{aligned}
$$

Translational invariance:

D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Proceedings of the thirty-third annual ACM symposium on Theory of computing - STOC '01 (2001)

Dirac and Weyl Quantum Walks

Assumptions on dynamics: unitarity, locality, homogeneity, isotropy

Dirac and Weyl Quantum Walks

Assumptions on dynamics:
unitarity, locality, homogeneity, isotropy

1+1 dimensions: $L \stackrel{M}{\longleftrightarrow} R$

Dirac and Weyl Quantum Walks

Assumptions on dynamics:
unitarity, locality, homogeneity, isotropy
$1+1$ dimensions: $L \stackrel{M}{\hookrightarrow} R$

Dirac QW

$U_{R}=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right) \quad U_{\mathrm{L}}=\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right)$
$U_{\mathrm{M}}=\left(\begin{array}{cc}0 & i m \\ i m & 0\end{array}\right) \quad n^{2}+m^{2}=1$
A. Bisio, G. M. D'Ariano, and
A. Tosini, Ann. Phys. 354(0):244

- 264 (2015)

Dirac and Weyl Quantum Walks

Assumptions on dynamics:
unitarity, locality, homogeneity, isotropy
$1+1$ dimensions:

$2+1$ dimensions:

Dirac OW

$U_{R}=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right) \quad U_{\mathrm{L}}=\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right)$
$U_{\mathrm{M}}=\left(\begin{array}{cc}0 & i m \\ i m & 0\end{array}\right) \quad n^{2}+m^{2}=1$
A. Bisio, G. M. D'Ariano, and
A. Tosini, Ann. Phys. 354(0):244

- 264 (2015)

Dirac and Weyl Quantum Walks

Assumptions on dynamics: unitarity, locality, homogeneity, isotropy

1+1 dimensions:

Dirac QW
$U_{\mathrm{R}}=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right) \quad U_{\mathrm{L}}=\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right) \quad U_{\mathrm{R}}=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ -v & 0\end{array}\right) \quad U_{\mathrm{L}}=\frac{1}{2}\left(\begin{array}{cc}0 & v^{*} \\ 0 & 1\end{array}\right)$
$U_{\mathrm{M}}=\left(\begin{array}{cc}0 & i m \\ i m & 0\end{array}\right) \quad n^{2}+m^{2}=1 \quad U_{\mathrm{U}}=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ v & 0\end{array}\right) \quad U_{\mathrm{D}}=\frac{1}{2}\left(\begin{array}{cc}0 & -v^{*} \\ 0 & 1\end{array}\right)$
A. Bisio, G. M. D'Ariano, and
A. Tosini, Ann. Phys. 354(0):244

- 264 (2015)

2+1 dimensions:
Weyl QW
R
I

Dirac and Weyl Quantum Walks

$$
\boldsymbol{k} \in \mathcal{B} \quad U_{\boldsymbol{k}}=\sum_{\boldsymbol{h} \in S} e^{-i \boldsymbol{k} \cdot \boldsymbol{h}} U_{\boldsymbol{h}}=e^{-i H(\boldsymbol{k})} \quad \mathcal{Y}_{\boldsymbol{k}}\left|u_{r}(\boldsymbol{k})\right\rangle=e_{\prod_{\text {Walk Hamiltonian }}^{-i \omega(k)}}^{\uparrow}\left|u_{r}(\boldsymbol{k})\right\rangle
$$

Power expansion for small momenta

$$
\|\boldsymbol{k}\| \ll 1 \Longrightarrow H(\boldsymbol{k})=\gamma_{0} \gamma \cdot \boldsymbol{k}+m \gamma_{0}+\mathcal{O}\left(m^{2}\right)+\mathcal{O}\left(\|\boldsymbol{k}\|^{2}\right)
$$

Dirac and Weyl Quantum Walks

$$
\boldsymbol{k} \in \mathcal{B} \quad U_{k}=\sum_{h \in S} e^{-i \boldsymbol{k} \cdot \boldsymbol{h}} U_{\boldsymbol{h}}=e^{-i \mu(\boldsymbol{k})} \quad \mathcal{U}_{\boldsymbol{k}}\left|u_{r}(\boldsymbol{k})\right\rangle=e^{-i \omega(k)}\left|u_{r}(\boldsymbol{k})\right\rangle
$$

Power expansion for small momenta

$$
\|\boldsymbol{k}\| \ll 1 \Longrightarrow H(\boldsymbol{k})=\gamma_{0} \gamma \cdot \boldsymbol{k}+m \gamma_{0}+\mathcal{O}\left(m^{2}\right)+\mathcal{O}\left(\|\boldsymbol{k}\|^{2}\right)
$$

Dirac QW dispersion relation $1+1$ dim

Dirac and Weyl Quantum Walks

$$
\boldsymbol{k} \in \mathcal{B} \quad U_{\boldsymbol{k}}=\sum_{\boldsymbol{h} \in S} e^{-i \boldsymbol{k} \cdot \boldsymbol{h}} U_{\boldsymbol{h}}=e^{-i H(\boldsymbol{k})} \quad \mathcal{U}_{\boldsymbol{k}}\left|u_{r}(\boldsymbol{k})\right\rangle=e^{-i \omega(\boldsymbol{k})}\left|u_{r}(\boldsymbol{k})\right\rangle
$$

Power expansion for small momenta

$$
\|\boldsymbol{k}\| \ll 1 \Longrightarrow H(\boldsymbol{k})=\gamma_{0} \gamma \cdot \boldsymbol{k}+m \gamma_{0}+\mathcal{O}\left(m^{2}\right)+\mathcal{O}\left(\|\boldsymbol{k}\|^{2}\right)
$$

Dirac QW dispersion relation 1+1 dim

Dirac OW dispersion relation $2+1$ dim

Discrete path-integral for OWs

$$
U=\sum_{h} T_{h} \otimes U_{h}
$$

Discrete path-integral for OWs

$$
U=\sum_{h} T_{h} \otimes U_{h} \quad \begin{gathered}
\text { Paths with } t \text { steps } \\
\sigma=h_{1} h_{2} \cdots h_{t}
\end{gathered}
$$

Discrete path-integral for OWs

$$
U=\sum_{h} T_{h} \otimes U_{h} \quad \begin{gathered}
\text { Paths with } t \text { steps } \\
\sigma=h_{1} h_{2} \cdots h_{t}
\end{gathered} \quad \stackrel{\mathrm{~L}}{\underset{\mathrm{D}}{\longrightarrow}} \mathrm{R} \quad h=\mathrm{R}, \mathrm{~L}, \mathrm{U}, \mathrm{D}
$$

Discrete path-integral for OWs

$$
U=\sum_{h} T_{h} \otimes U_{h} \quad \begin{gathered}
\text { Paths with } t \text { steps } \\
\sigma=h_{1} h_{2} \cdots h_{t}
\end{gathered} \quad \stackrel{\mathrm{~L}}{\leftrightarrows} \quad \mathrm{R} \quad h=\mathrm{R}, \mathrm{~L}, \mathrm{U}, \mathrm{D}
$$

$\psi_{x}(t)=\sum_{x^{\prime}} \sum_{\sigma} U_{h_{t}} \cdots U_{h_{2}} U_{h_{1}} \psi_{x^{\prime}}(0)$
Points in the past
causal cone of x

Discrete path-integral for OWs

$$
\begin{gathered}
U=\sum_{h} T_{h} \otimes U_{h} \quad \text { Paths with } t \text { steps } \\
\sigma=h_{1} h_{2} \cdots h_{t}
\end{gathered}
$$

$$
\psi_{x}(t)=\sum_{x^{\prime}} \sum_{\sigma} U_{h_{t}} \cdots U_{h_{2}} U_{h_{1}} \psi_{x^{\prime}}(0)
$$

Points in the past
causal cone of x
For Dirac and Weyl:

$$
U_{h_{t}} \cdots U_{h_{2}} U_{h_{1}}=\varphi(\sigma) U_{h\left(h_{1}, h_{t}\right)} \quad \square \quad \psi_{x}(t)=\sum_{x^{\prime}} \sum_{h} c_{h} U_{h} \psi_{x^{\prime}}(0)
$$

Discrete path-integral for QWs

$$
\begin{gathered}
U=\sum_{h} T_{h} \otimes U_{h} \quad \text { Paths with } t \text { steps } \\
\sigma=h_{1} h_{2} \cdots h_{t}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \psi_{x}(t)=\sum_{x^{\prime}} \sum_{\sigma} U_{h_{t}} \cdots U_{h_{2}} U_{h_{1}} \psi_{x^{\prime}}(0) \\
& \text { Points in the past }
\end{aligned}
$$

causal cone of x
For Dirac and Weyl:

$$
U_{h_{t}} \cdots U_{h_{2}} U_{h_{1}}=\varphi(\sigma) U_{h\left(h_{1}, h_{t}\right)} \quad \square \quad \psi_{x}(t)=\sum_{x^{\prime}} \sum_{h} c_{h} U_{h} \psi_{x^{\prime}}(0)
$$

Phase depends on the full path!

Discrete path-integral for OWs

Discrete path-integral for OWs

Idea: binary encoding of paths

Topology of paths translated in properties of binary strings

Discrete path-integral for OWs

Idea: binary encoding of paths

Topology of paths translated in properties of binary strings

$\stackrel{U}{\uparrow}$	$h=\mathrm{R}, \mathrm{L}, \mathrm{U}, \mathrm{D}$	$h=a b$	$w^{(1)}=a_{1} a_{2} \cdots a_{t}$
$\underset{\mathrm{~L}}{\ddagger}$	$\mathrm{R}=00, \mathrm{~L}=11$, $\mathrm{U}=10, \mathrm{D}=01$	$\sigma=\left(w^{(1)}, w^{(2)}\right)$	$w^{(2)}=b_{1} b_{2} \cdots b_{t}$

Discrete path-integral for OWs

Idea: binary encoding of paths

Topology of paths translated in properties of binary strings

$$
\begin{array}{ll}
h=\mathrm{R}, \mathrm{~L}, \mathrm{U}, \mathrm{D} & h=a b \\
\mathrm{R}=00, \mathrm{~L}=11, & \sigma=\left(w^{(1)}, w^{(2)}\right)
\end{array}
$$

$$
\begin{aligned}
w^{(1)} & =a_{1} a_{2} \cdots a_{t} \\
w^{(2)} & =b_{1} b_{2} \cdots b_{t}
\end{aligned}
$$

Admissible paths:

$$
\left(x^{\prime}, y^{\prime}, 0\right) \longrightarrow(x, y, t)
$$

$$
\begin{aligned}
& \sum_{i} a_{i}=\frac{1}{2}\left[t-\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right)\right] \\
& \sum_{i} b_{i}=\frac{1}{2}\left[t-\left(x-x^{\prime}\right)-\left(y-y^{\prime}\right)\right]
\end{aligned}
$$

Discrete path-integral for OWs

Idea: binary encoding of paths

Topology of paths translated in properties of binary strings

$$
\begin{array}{ll}
h=\mathrm{R}, \mathrm{~L}, \mathrm{U}, \mathrm{D} & h=a b \\
\mathrm{R}=00, \mathrm{~L}=11, & \sigma=\left(w^{(1)}, w^{(2)}\right) \\
\mathrm{U}=10, \mathrm{D}=01 &
\end{array}
$$

$$
\begin{aligned}
w^{(1)} & =a_{1} a_{2} \cdots a_{t} \\
w^{(2)} & =b_{1} b_{2} \cdots b_{t}
\end{aligned}
$$

Admissible paths:

$$
\left(x^{\prime}, y^{\prime}, 0\right) \longrightarrow(x, y, t)
$$

$$
\begin{aligned}
& \sum_{i} a_{i}=\frac{1}{2}\left[t-\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right)\right] \\
& \sum_{i} b_{i}=\frac{1}{2}\left[t-\left(x-x^{\prime}\right)-\left(y-y^{\prime}\right)\right]
\end{aligned}
$$

Phase is then a binary function
G. M. D'Ariano, N. Mosco, P. Perinotti, and A. Tosini, EPL 109(4):40012 (2015)

Discrete path-integral for OWs

Idea: binary encoding of paths

Topology of paths translated in properties of binary strings

$$
\begin{array}{lll}
\begin{array}{ll}
h & =\text { R,L,U,D }
\end{array} & h=a b & w^{(1)}= \\
\mathrm{R}=00, \mathrm{~L}=11, & \sigma=\left(w^{(1)}, w^{(2)}\right) & w^{(2)}= \\
\mathrm{U}=10, \mathrm{D}=01 & \\
\psi_{x}(t)= & \sum_{x^{\prime}} \sum_{a, b} c_{a b} U_{a b} \psi_{x^{\prime}}(0) \\
c_{a b}= & \sum_{p} \sum_{a^{\prime}} \sum_{k}(-1)^{k+\left(a \oplus a^{\prime}\right) b} \\
& \binom{K_{1}-1}{p-1}\binom{t-K_{1}-1}{p-a-a^{\prime}}\binom{\mu}{k}\binom{t-\mu-1}{K_{2}-k-b} \\
\mu= & 2 p-a-a^{\prime}
\end{array}
$$

G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini, EPL 109(4):40012 (2015)

Dirac OW in 1+1 dimensions

Particle state Zitterbewegung

- mass $m=0.15$
- width $\sigma=40^{-1}$
- mean wave-vector $k_{0}=0.01 \pi$
- spinor components $c_{+}=c_{-}=1 / \sqrt{2}$
G. M. D'Ariano, N. Mosco, P. Perinotti, and A. Tosini, Entropy 18(6) (2016)

Dirac QW in 3+1 dimensions

G. M. D'Ariano, N. Mosco,
P. Perinotti, and A. Tosini, Entropy 18(6) (2016)

Dirac QW in 3+1 dimensions

Particle state Zitterbewegung

- size: 512
- steps: 1200
- mass: 0.002
- width: 32
G. M. D'Ariano, N. Mosco, P. Perinotti, and A. Tosini, Entropy 18(6) (2016)

Dirac QW in 3+1 dimensions

Particle state Zitterbewegung

- size: 512
- steps: 1200
- mass: 0.002
- width: 32
G. M. D'Ariano, N. Mosco, P. Perinotti, and A. Tosini, Entropy 18(6) (2016)

Summary

- Quantum Walks as description of free relativistic particles
- Dirac and Weyl equations recovered in the limit of small momenta
- Closed algebra of transition matrices
- Solution in position representation in terms of a discrete path-integral
- Binary encoding of paths and study of binary functions

Beto Collaboration Project

Summary

- Quantum Walks as description of free relativistic particles
- Dirac and Weyl equations recovered in the limit of small momenta
- Closed algebra of transition matrices
- Solution in position representation in terms of a discrete path-integral
- Binary encoding of paths and study of binary functions

