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Dirac QW in 1+1 dimensionsEntropy 2016, 18, 228 15 of 19

Figure 5. Evolution according to the Dirac QW in 1 + 1 dimensions for t = 150 time-steps of particle
states having both a particle and an antiparticle component, as defined in Equation (63). Here the
states are Gaussian with parameters: mass m = 0.15, width s = 40�1, mean wave-vector k0 = 0.01p,
c+ = c� = 1/

p
2. Top and bottom-left: probability distribution of the position. Bottom-right: evolution

of position mean value.

Figure 6. Evolution for the mean position according to the Dirac QW in 3 + 1 dimensions for
t = 200 time-steps of particle states having both a particle and an antiparticle component, as defined
in Equation (63). Here the states are Gaussian with parameters: mass m = 0.3, mean wave-vector
k0 = (0, 0.01p, 0), width si = s = 32�1 for i = x, y, z; the spinor components in the walk eigenbasis are
(1/

p
2, 0, 1/

p
2, 0), with the first two components corresponding to the positive energy part and the

second two to the negative one; time evolution from left to right.

Remark 1 (Newton–Wigner position operator evolution). As in QFT, one can define the Newton–Wigner
position operator XNW which does not mix states with positive and negative eigenvalues. Given
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Dirac QW in 3+1 dimensions

Entropy 2016, 18, 228 12 of 19

Figure 3. Evolution of a perfectly localised state for the Dirac QW in 3 + 1-dimensions. The figures
show the probability distribution at times t = 0, 8, 16, from left to right. In this case, the mass parameter
is m = 0.03 and the spinor in the canonical basis is (1, 0, 0, 0).

Figure 4. Evolution of a perfectly localised state for the Dirac QW in 3 + 1-dimensions. Top-centre:
final probability distribution of the same initial state of Figure 3, after t = 28 time-steps. Top-left:
projection of the state along the y-axis; top-right: projection along the x-axis; bottom: projection on the
(x, y)-plane.

The definition of the mechanical momentum would need an interacting theory allowing
momentum exchange between different particles. However, in Section 3, we have seen that for
small k and m, the wave-vector k (namely the conjugated variable of x via the Fourier transform)
corresponds to the Dirac particle momentum. Moreover, the momentum operator should correspond
to the generator of translations over the lattice. Therefore, as conjugated momentum we take the
following operator P = 1

(2p)d

R
B dk k(|kihk|⌦ I). We can now compute the commutator between Xi

and Pj, i, j = x, y, z. That is,

[Xi, Pj] = dij
1

2p Â
xi

Z p

�p
dkj Â

yi

yikj |xiihyi| e�ikj(xi�yi) � dij
1

2p

Z p

�p
dkj Â

zi ,wi

zikj |wiihzi| eikj(zi�wi)

= dij
1

2p Â
xi ,yi

Z p

�p
dkj (xi � yi)kj |xiihy| e�ikj(xi�yi), (49)

G. M. D’Ariano, N. Mosco, 
P. Perinotti, and A. Tosini, 

Entropy 18(6) (2016)
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Summary

• Quantum Walks as description of free relativistic particles 

• Dirac and Weyl equations recovered in the limit of small 
momenta 

• Closed algebra of transition matrices 

• Solution in position representation in terms of a discrete 
path-integral 

• Binary encoding of paths and study of binary functions
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