

Searches for BSM physics in dilepton, multilepton and lepton + MET final states at CMS

International Conference on New Frontiers in Physics, Kolymbari (Crete), 9 july 2016

Lisa Benato on behalf of CMS collaboration

Summary

Outlook

- Many BSM physics models predict the existence of new heavy particles decaying into dilepton, multilepton and lepton + neutrino final states
 - leptons = e, μ
 - **neutrinos** = revealed as MET (missing transverse energy)
- The leptonic final states are historically channels of discovery and precision measurements: very clean signatures
- Dealing with high energetic leptons implies careful studies of the objects and their properties
- Models predict very small branching ratio for leptonic decays:
 - accurate evaluation of backgrounds
 - often statistical uncertainties dominate
- We present here the results obtained from the LHC Run 2 data collected in 2015 at CMS
 - going up to $\sqrt{s}=13$ TeV makes the parton luminosities of processes $q\bar{q}\to X$ increase substantially, especially at high mass region

CMS experiment

High energy objects

Muons

- High-p_T muon reconstruction algorithms have been exploited: combine informations from outer muon chambers and inner tracker; improvement in muon identification efficiency
- Main issues: p_T measurement strongly influenced by **alignment** and **showering** inside the detector $\rightarrow p_T$ **resolution decreases** at higher values
- Many studies performed on cosmic muons:

Flectrons

- Particle flow candidates: reconstructed using informations from all the sub-detectors
- Dedicated selections for High-p_T electrons
- ightharpoonup Energy and $p_{\overline{l}}$ resolution approx. constant at increasing energy

Missing transverse energy

- E_I^{miss} magnitude is influenced by all the other objects, including jets, and their corrections
- → Isolation requirements of the leptons, to reduce backgrounds coming from objects misidentified as \(\ell \)

Main benchmark models explored

Sequential standard model and super string inspired models

- \bullet Enlarging SM gauge symmetry group \to once broken, new residual groups \to new spin-1 heavy bosons
- \rightarrow W'_{SSM} and Z'_{SSM} : heavy spin-1 W and Z (same couplings to leptons)
- Super string inspired Z'_{Ψ} from E(6) breaking

Seesaw type III mechanism

Heavy particles accounting for neutrino masses and their smallnes

- ightharpoonup Fermionic triplet (Σ^0, Σ^{\pm}) coupled to leptons and Higgs
- Multi-lepton final states (at least 3)
- lacktriangled Decay rate of Σ to $\ell \propto \frac{V_\ell}{\sqrt{|V_\Theta|^2 + |V_\mu|^2 + |V_\tau|^2}}$
- ightharpoonup Flavour democratic scenario same V_{ℓ} for e, μ, τ

Quantum black holes

Fundamental Planck scale at TeV: production of microscopic black holes decaying into couple of particles

- \rightarrow Spin-0, colourless, neutral QBH with lepton flavour violation (final state $e\mu$)
- Interpretation depending on extra-dimensions n (n=1: Randall-Sundrum, $n\geq 2$ ADD) and QBH mass threshold M_{th}

$Z' \rightarrow \ell^+ \ell^-$ (CMS PAS EXO-15-005)

Analysis strategy

Invariant mass of the heaviest $\ell^+\ell^-$ pair, after all ℓ selections

Background predictions

- → Drell-Yan process $Z/\gamma^* \to \ell^+\ell^-$: predicted via MC samples
- Prompt leptons (t̄t̄, tW, WW, WZ, ZZ): predicted via MC samples, validation on data in eμ region
- Non-prompt leptons (jets misidentified as leptons): predictions data-driven
- Cosmic muons: suppressed with cut on impact parameter w.r.t. primary vertex
- → Highest mass event: 2.9 TeV in ee
- → 0.036 ± 0.009 ee events expected above 2.8 TeV (1 seen): local p-value 0.036

$Z' \rightarrow \ell^+ \ell^-$ (CMS PAS EXO-15-005)

Limits extraction and interpretations

- Limits at 95% CL on $\frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z/\gamma^* + X \to \ell\ell + X)}$, Bayesian unbinned likelihood
- Main uncertainties:
 - Signal: lepton identification (e 6%, μ 7%)
 - Background: PDF uncertainties (20% at 3 TeV)
 - Mass scale uncertainty (e 1%, μ 3%)
- → Signal modelled as convolution Breit-Wigner and Gaussian, narrow width approximation explored (Γ_{Z'_W} = 0.6%, Γ_{Z'_{SSM}} = 3%)
 - only on-shell region of the resonance is considered, interference is strongly model-dependent
- ightharpoonup Observed limits (final $\Gamma=0.6\%$):

Channel	Z_{Ψ}	Z_{SSM}
ee	2.40 TeV	2.75 TeV
$\mu\mu$	2.40 TeV	3.00 TeV
comb.	2.60 TeV	3.15 TeV

$W' ightarrow \ell u$ (CMS PAS EXO-15-006)

Analysis strateay

Discriminant variable is the transverse invariant mass;

$$M_T = \sqrt{2p_T^{\ell} E_T^{miss} \left(1 - \cos\left[\Delta\phi(\vec{p_T^{\ell}}, \vec{p_T^{miss}})\right]\right)}$$

- Back-to-back topology:
 - $|\Delta\phi(\vec{p_T^\ell},\vec{p_T^{miss}})| > 2.5$
 - $0.4 < p_T/E_T^{miss} < 1.5$

Background predictions

- $W \to \ell \nu$: predicted from MC
- → Secondary: Drell-Yan, t̄t̄, single t, WW, WZ, ZZ from simulation
- QCD multijet: estimated from data
- Cosmic muons: suppressed with cut on impact parameter w.r.t. primary vertex

Event vield

Limits extraction and interpretations

- Limits at 95% CL on $\sigma(pp \to W' + X \to \ell\nu + X)$, CL_s method
- Limits provided in region > 1 TeV, where Run 2 data are more sensitive due to the increased \sqrt{s} and cross section
- Main uncertainties:
 - Muon channel: muon momentum scale and p_T resolution, that propagate to E_T^{miss}
 - Electron channel: mainly affected by PDF uncertainties at high M_T
- Observed limits:

Channel	W'_{SSM}
е	3.8 TeV
μ	4.0 TeV
comb.	4.4 TeV

Main benchmark models explored

Sequential standard model and super string inspired models

- \bullet Enlarging SM gauge symmetry group \to once broken, new residual groups \to new spin-1 heavy bosons
- \longrightarrow W_{SSM}' and Z_{SSM}' : heavy spin-1 W and Z (same couplings to leptons)
- \rightarrow Super string inspired Z'_{w} from E(6) breaking

Seesaw type III mechanism

Heavy particles accounting for neutrino masses and their smallness

- Fermionic triplet (Σ⁰, Σ[±]) coupled to leptons and Higgs
- → Multi-lepton final states (at least 3)
- lacktriangle Decay rate of Σ to $\ell \propto \frac{V_\ell}{\sqrt{|V_{\Theta}|^2 + |V_{\mu}|^2 + |V_{\tau}|^2}}$
- ightharpoonup Flavour democratic scenario same V_ℓ for e, μ, au

Quantum black holes

Fundamental Planck scale at TeV: production of microscopic black holes decaying into couple of particles

- \blacksquare Spin-0, colourless, neutral QBH with lepton flavour violation (final state $e\mu$)
- Interpretation depending on extra-dimensions n (n=1: Randall-Sundrum, $n \ge 2$ ADD) and QBH mass threshold M_{th}

Seesaw type III (CMS PAS EXO-16-002)

Analysis strategy

- ⇒ 27 signal channels grouped in categories depending on the number of OSSF pairs (0,1,2) and the $m_{\ell^+\ell^-}$ (on-above m_Z)
- Efficient cut to reject backgrounds: $L_T + E_T^{miss} > 350$ GeV, scalar sum of lepton p_T

Background predictions

- $WZ \rightarrow \ell\ell\ell$; on MC, validated on data
- Leptonic tt + misidentified lepton: kinematics from MC, misidentification rates measured in data control region
- $ightharpoonup Z
 ightarrow \ell\ell$ + misidentified lepton in jet: data-driven prediction
- \rightarrow ZZ \rightarrow 4 ℓ : on MC, validated on data
- Rare processes ($t\bar{t}Z$, $t\bar{t}W$) and Higgs ($H \rightarrow 4\ell$); on MC

Event yield

1 OSSF pair, 3 leptons, $m_{\varrho+\varrho-}$ above-Z:

At least 1 OSSF pairs, 4 leptons:

Limits extraction and interpretations

- Limits at 95% CL on $\sigma(pp \to (\Sigma^0\Sigma^+, \Sigma^0\Sigma^-, \Sigma^+\Sigma^-) + X)$, CLs method
- Assumptions: degenerate m_Σ, flavour democratic scenario
 V_e = V_u = V_τ = 10⁻⁶
- p-value for all channels is 0.93
- Uncertainties dominated by statistics
 - Systematics small, due to PDF, renormalization and factorization uncertainties related to E_I^{miss} range in dominant WZ background
- Observed limit:

Channel	m _Σ
comb.	440 GeV

Main benchmark models explored

Sequential standard model and super string inspired models

- ➡ Enlarging SM gauge symmetry group → once broken, new residual groups → new spin-1 heavy bosons
- \longrightarrow W_{SSM}' and Z_{SSM}' : heavy spin-1 W and Z (same couplings to leptons)
- \rightarrow Super string inspired Z'_{Ψ} from E(6) breaking

Seesaw type III mechanism

Heavy particles accounting for neutrino masses and their smallnes

- lacktriangle Fermionic triplet (Σ^0, Σ^\pm) coupled to leptons and Higgs
- Multi-lepton final states (at least 3)
- lacktriangled Decay rate of Σ to $\ell \propto \frac{V_\ell}{\sqrt{|V_\Theta|^2 + |V_\mu|^2 + |V_\tau|^2}}$
- ightharpoonup Flavour democratic scenario same V_{ℓ} for e, μ, τ

Quantum black holes

Fundamental Planck scale at TeV: production of microscopic black holes decaying into couple of particles

- ightharpoonup Spin-0, colourless, neutral QBH with lepton flavour violation (final state e_{μ})
- → Interpretation depending on extra-dimensions n (n=1: Randall-Sundrum, $n\geq 2$ ADD) and QBH mass threshold M_{th}

Quantum black holes: $e\mu$ resonances

Analysis strategy

- Invariant mass $e\mu$ distribution
- lacktriangle Most energetic $e\mu$ pair not required to be OS
- Electrons close (\(\Delta R < 0.1\)) to muons producing bremsstrahlung are rejected (avoid misidentification)

Background predictions

- Prompt isolated leptons: t1, WW, WZ, ZZ, single t, DY estimated from MC samples
- Non prompt backgrounds (misidentified jets, mainly in W+jets process): data-driven prediction

Event yield

Quantum black holes: $e\mu$ resonances (CMS PAS EXO-16-001) (INFIN

Limits extraction and interpretations

- Limits at 95% CL on $\sigma(pp \to QBH + X \to e\mu + X)$, Bayesian binned likelihood
- Non-resonant signal: broad shape smeared by detector resolution and sharper edge at M_{th}
- Main uncertainties:
 - muon momentum scale uncertainties (30% at 3 TeV)
 - $t\bar{t}$ cross section (5%) and e μ shape modelling (affects the background yield of up to 26% at $M_{\rm e}\mu=1$ TeV; 30% at $M_{\rm e}\mu=3$ TeV)
- Observed limit:

n	M _{th}
1 (RS)	2.5 TeV
4 (ADD)	4.2 TeV
5 (ADD)	4.3 TeV
6 (ADD)	4.5 TeV

Conclusions

We are in the "search era" of LHC, a unique once-in-a-lifetime chance!

- BSM models predict the existence of new heavy particles decaying into leptons and MET
- Many searches have been performed during 2015 LHC Run 2 at CMS detector
- The increased \sqrt{s} allows improvements w.r.t. Run 1, pushing the exclusion limits to higher masses of the resonances
- These searches are being repeated in 2016 data: more luminosity is expected and more interesting results are coming soon

Thanks for your attention!

Backup slides

Limits from Run 1

$Z' \rightarrow \ell^+ \ell^-$

Model	mass
Z'_{SSM}	2.90 TeV
$Z_{\Psi}^{'}$	2.57 TeV

Quantum black holes: $e\mu$ resonances

Model	mass
QBH n=0	1.99 TeV
QBH n=1 (RS)	2.36 TeV
QBH n=2	3.15 TeV
QBH n=3	3.34 TeV
QBH n=4	3.46 TeV

$W' \to \ell \nu$

Model	mass
W_{SSM}^{\prime}	3.28 TeV

Seesaw type III mechanism

Important remarks on Run 1 analysis:

- \Longrightarrow the search was performed only in the 3ℓ final states
- every pair of OSSF leptons whose $m_{\ell^+\ell^-} \approx m_Z$ was vetoed
- decay channel via Higgs boson not considered
- different selections and different background evaluation strategy

Model	mass
$(\Sigma^0,\Sigma^+,\Sigma^-)$	278 GeV

Electron p_T and energy resolution

$Z' \rightarrow \ell^+ \ell^-$

Seesaw type III mechanism

Quantum black holes: $e\mu$ resonances

Alternative R-parity violating SUSY interpretation: au sneutrino

