

AMoRE: Search for neutrinoless double beta decay of ¹⁰⁰Mo

Geon-Bo Kim
on behalf of the AMoRE collaboration
Center for Underground Physics
Institute for Basic Science

Neutrinoless Double Beta Decay (0νββ)

- Majorana nature of neutrinos
- Absolute mass of Majorana neutrino

To be
$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z)|M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \qquad \text{Eff. v mass}$$
 Phase space factor NME

- Lapton number violation
- Extremely rare process

$$T_{1/2}^{0\nu} > 1.1 \times 10^{24} \text{year} (^{100}\text{Mo}, \text{NEMO-3})$$

AMoRE

(Advanced Mo-based Rare Process Experiment)

Neutrinoless double beta decay

Metallic magnetic calorimeter

International project search for $0\sqrt{\beta\beta}$ of 100Mo using CaMoO₄ scintillating crystals and MMCs.

Why 100Mo?

Candidates	Q _{ββ} (MeV)	Natural Abundance(%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
124 Sn \rightarrow 124 Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	3.367	5.6

Phy. Rev. C, 53, 695 (1996)

G. Pantis, F. Simkovic,

J. D. Vergados, and Amand Faessler

Advantages of ¹⁰⁰Mo

- Q-value (higher than natural γ -rays)
- High natural abundance
- High PSF&NME

Barea et al., Phy. Rev. Lett. 109, 042501 (2012)

Sm
Pt

Ca
Se
Mo
Te
Nd

So
Nd

Expected half-lives for $\langle m_v \rangle = 1 \text{ eV}$

Mass number

⁴⁰Ca¹⁰⁰MoO₄ crystals

- Enrichment of ¹⁰⁰Mo (natural abundance : 9.6%)
 - Gas-centrifuge method
 - Enrichment of ¹⁰⁰Mo is higher than 96%.
- Depletion of ⁴⁸Ca (natural abundance : 0.157%) in natural Ca
 - Electromagnetic separation
 - Composition of 48 Ca is less than 0.001 %.

Candidates	Q _{ββ} (MeV)	N.A. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187

⁴⁸Ca can makes background on the Q-value region of ¹⁰⁰Mo

Metallic Magnetic Calorimeter

Measure temperature increases caused by particle interactions

- Magnetic material Au:Er (100~1000ppm, weakly-interacting paramagnetic system)
- Most of absorbed energy is converted to heat → High energy resolution

- Working at tens of mK

- Good linearity from keV to MeV
- 1.2keV FWHM Gaussian width for 5.5MeV α

300 55Mn, Ka $\Delta E_{\text{FWHM}} = 1.58 \text{ eV}$ 250 Counts / 0.4 eV 1.6 eV FWHM for 6 keV x-rays 100 50 5.88 5.90 5.86 5.92 Energy (keV) Residual 5.88 5.90 5.86

AMoRE Detector Concept

G. B. Kim, et al., IEEE Trans. Nucl. Sci. 63 (2) (2016) 539–542

Simultaneous measurement of

Heat & Scintillation light using MMCs

Source = Detector

- → High detection efficiency
- → High energy resolution

Heat / Light simultaneous measurement

- → Particle discrimination
- \rightarrow Rejection of α induced backgrounds

Attractive detection scheme!

Sensitivity on 0νββ and AMoRE

Sizeable background case

mass

Detection Isotopic Efficiency Detector Mass Abundance $a = (\ln 2) N = \varepsilon$ Measurem ent time

Background rate

"Zero" background case

$$T_{1/2}^{0\nu}(\exp) = (\ln 2) N_a \frac{a}{A} \varepsilon \frac{MT}{n_{CL}}$$

Background reduction

Toward zero background experiment!

- High energy resolution with MMCs (~ 10 keV)
- α background rejection by Heat&Light simultaneous measurement
- Almost no γ background at ROI of ¹⁰⁰Mo (Q=3 MeV)
- Detector mass
- Enrichment of 100 Mo up to > 96 % with 200 g ~ 500 g crystals
- Detection efficiency
- "Source equals to detector" configuration

Resolution

Sensitivity to half-life of 0v88

AMoRE prototype detector

- Tested at an <u>above-ground lab</u>.
- With partial lead shield of 10 cm

Light (photon) detector

Heat (phonon) detector

G. B. Kim, et al., IEEE Trans. Nucl. Sci. 63 (2) (2016) 539-542

Detector performances

- FWHM Energy resolution: 8.7 keV @ 2.6 MeV (ROI: 3.0 MeV)
- Energy is well calibrated by quadratic polynomial function
- Deviation $< 2 \text{ keV for } \gamma$ -ray peaks

Detector performances

Pulse shape discrimination (PSD) in Heat signal

Particle discrimination by Heat/Light ratio

$$DP = (\mu_1 - \mu_2) / \sqrt{\sigma_1^2 + \sigma_2^2}$$

u: mean values of distributions

σ: standard deviations of distributions

- Mean-time shows $18\sim20~\sigma$ separation power at $10\sim40~mK$

AMoRE-Pilot Experiment

	Pilot	Phase I	Phase II
Total mass of crystal	1.5 kg	5 kg	200 kg

Five detector cells

NOSV copper structure

PEEK crystal supports

PTFE&Cu crystal holders

- Five ⁴⁰Ca¹⁰⁰MoO₄ crystals of total 1.5 kg
- ▶ 5 heat detectors + 6 light detectors
- Goal: 1 year measurement with zero background condition at **Y2L**
- Now in a commissioning run

YangYang underground Laboratory (Y2L)

In Yangyang pumped storage Power Plant

Minimum vertical depth: 700 m

Access to the lab by car: around 2 km

Experiments

• KIMS : dark matter search experiment

• AMoRE : $0v \beta\beta$ decay search experiment

Refrigerator for AMoRE-Pilot

- CFDR for AMoRE-pilot and Phase-I
- Leiden: CF-1200-maglav
- 1.4 mW at 120 mK.
- Volume : (D) 408 mm x (H) 690 mm
- Copper cans on each temp. stages
- T_{min} : 8.7 mK as tested.
- t_{cooling} : ~one week with extra 180 kg

Pb and Cu and on the M.C.

Shieldings External Pb shield with 15 cm -50mK Internal Pb shield ₹10mK with 10 cm Superconducting magnetic shield made by Pb Detector tower Thermal radiation shields made of Cu

Background Simulation

External BG simulation for AMoRE Phase-I

A. Luqman, et al., arXiv:1601.01249

- The measured impurity level has been used for MC simulation.
- The external background can not give any events to Phase-I.
- We need more consideration about materials for Phase-II.
- The internal background of CMO crystals have been measure at Y2L.
- The most effective background is caused by ²⁰⁸Tl in the crystals.

Current status of AMoRE-pilot

- -Measured waveform from the **Prototype** detector
- -Above-ground with Wet-DR
- -Low vibration effect

- -Measured waveform from the **Pilot** detector
- -Underground with CF-DR
- -Huge vibration by pulse-tube

- > There were two phases of commissioning run
- Collecting information on detector performances, background sources
- > Currently we are focused on
- Reduction of vibration induced noises
- Get rid of radioactive background sources from detector, cryostat, shieldings

Summary of the AMoRE project

Crystal: ⁴⁰Ca¹⁰⁰MoO₄, doubly enriched scintillating c
 rystals

 Detector: Cryogenic detector with MMC for heat and light measurement

• Temperature: ~20 mK

Zero background measurement in ROI

• Location: Y2L (till Phase I) and a new lab (Phase II)

Fully funded for Pilot, Phase I and II.

	Pilot	Phase I	Phase II
Total mass of crystal	1.5 kg	5 kg	200 kg
$T_{1/2}$ Sensitivity [years]	3.2×10^{24}	2.7×10^{25}	1.1×10^{27}
<m<sub>ββ> Sensitivity [meV]</m<sub>	210-400	70-140	12-22
Location	Y2L	Y2L	New lab.
Schedule	2015-2017	2017-2019	2020-