



# KM3NeT/ORCA: Oscillation Research with Cosmics in the Abyss

Salvatore Galatà
APC, Paris



1st International Workshop for Neutrino Oscillation Tomography
Earthquake Research Institute, Tokyo
08.01.2016

## The KM3NeT infrastructure

An infrastructure for "Research with Cosmics in the Abyss"



KM3NeT Optical

Module (OM)

Unit (DU)

- Neutrino physics: mass hierarchy, dark matter,...
- Optimised for neutrinos from a few GeV up to ~100 GeV
- · Will be located offshore the Southern coast of France

- born after IceCube detection
- Optimised for neutrinos from ~100 GeV on
- Will be located offshore the Southern coast of Italy (Sicily)

## Neutrino Oscillations and Mass Hierarchy

- Neutrinos can change flavour
- Relevant parameters:
  - Mixing angles  $\theta_{23}$ ,  $\theta_{13}$ ,  $\theta_{12}$
  - CP violating phase  $\delta_{CP}$
  - Mass-squared differences:
     Δm²<sub>ij</sub> = m²<sub>i</sub> m²<sub>j</sub>
     (actual masses are unknown)
- Vacuum oscillation only depends on distance, energy and mass-squared differences: it tells us Δm<sup>2</sup><sub>21</sub><< |Δm<sup>2</sup><sub>32</sub>|



 Oscillation is different in matter (MSW-effect): this can be used to measure the neutrino mass hierarchy and for the Earth tomography

## Atmospheric neutrinos

- Produced by the interaction of cosmic rays with the atmosphere
- A free source of neutrinos with a wide energy range
- cos(Zenith) defines the propagation length and the density profile



Honda 2014 neutrino flux



PREM density profile with a few representative neutrino trajectories

## Oscillation probability and matter effects

- Here represented as an "oscillogram" cos(Zenith) vs Energy
- Resonance conditions for matter effects (or MSW effect):
   2.5 < E<sub>v</sub> < 6 GeV for mantle and core densities</li>
- Atm. neutrinos in Earth provide a suitable combination





Probability  $v_u \rightarrow v_u$  (Vacuum)

## Oscillation probability and matter effects

- Here represented as an "oscillogram" cos(Zenith) vs Energy
- Resonance conditions for matter effects (or MSW effect):
   2.5 < E<sub>v</sub> < 6 GeV for mantle and core densities</li>
- Atm. neutrinos in Earth provide a suitable combination





Probability  $v_{\mu} \rightarrow v_{\mu}$  (**Earth** density profile)

## Oscillation probability and matter effects

 Matter effects are sensitive to the electron density n<sub>e</sub> → can access composition of the Earth layers



Probability difference between the two models





top: outer core is only iron
bottom: outer core is iron + 5wt% H

## Neutrino interactions

**Charged Current:**  $v_l + X \rightarrow l + hadronic cascade$ 

**Neutral Current:**  $v_l + X \rightarrow v_l + hadronic cascade$ 

 $\frac{1 = leptonic \ flavour}{hadronic \ cascade} = e, \ \mu, \ \tau$   $\frac{hadronic \ cascade}{disintegration \ of \ the \ struck \ nucleus}$ 

#### Corresponding event topologies:

- track: all events with a muon in the final state, i.e.  $\upsilon_{\mu}CC$  and 17% of  $\upsilon_{\tau}CC$
- **showers:**  $v_eCC$ , 83% of  $v_\tau CC$  and all flavours NC

With our PID we can distinguish between these two topologies

## The ORCA detector



- 115 detection units, 20m spaced horizontally
- 18 Optical Modules (DOMs) per detection unit
- 9m vertical distance between DOMs
- Instrumented volume: ~5.7Mtons
- Estimated cost ~40 M€ (additional)

#### The KM3NeT DOM

- 17 inch pressure resistant glass sphere
- Hosting 31 photomultipliers,
   3 inch each
- Single photon counting
- Maximises photocathode area



The interior of the DOM



Picture of the multi-PMT
Digital Optical Module (DOM)

## Current status

- First KM3NeT string successfully deployed last 3/12/2015 @ the ARCA site
- The string is healthy, takes data and reconstructs
- 3 prototypes already deployed and tested
- Another string should be deployed "soon" (few months)
   @ the ORCA site
- Six ORCA strings already funded







## Performance evaluation for ORCA

- Evaluated using Monte Carlo simulations
- Relevant quantities for event reconstruction
  - Direction and energy resolution
  - Effective mass
  - Particle identification
  - Atmospheric muon background rejection

## Simulation chain



Footprint and z profile of the detector used for this study.

Nota bene: vertical spacing between DOMs is 6m, whereas optimization studies lead to chose 9m (more about this in forthcoming LoI).

- Atmospheric ν<sub>e</sub> ν<sub>μ</sub> ν<sub>τ</sub> (+ anti) → 1–100 GeV
- Neutrino interactions: GENIE, both charged and neutral currents
- For all particles sufficiently close to the detector: tracking + Cherenkov light emission
- Down-going atmospheric muons generated using MUPAGE parameterization (*Carminati et al.*, *Comput. Phys. Commun.* 179 (2008) 915-923)
- Optical <sup>40</sup>K background: 10kHz/PMT flat noise + 500 Hz/PMT time correlated
- Realistic trigger applied

Track reconstruction

#### **Direction:**

- Scan 7200 directions, chose the best
- Increase precision using a refined PDF of the time residuals (maximum likelihood fit)
- Finds the direction of the outgoing muon

#### **Energy and vertex**

- First find the vertex and the muon length, thus E<sub>µ</sub> (see figure)
- Obtain the neutrino energy using  $E_{\mu}$  and  $N_{hits}$

#### Bjorken y (inelasticity)

Use a PDF of the time residuals



## Track reconstruction

#### **Direction:**

- Scan 7200 directions, chose the best
- Increase precision using a refined PDF of the time residuals (maximum likelihood fit)
- Finds the direction of the outgoing muon

#### **Energy and vertex**

- First find the vertex and the muon length, thus E<sub>µ</sub>
- Obtain the neutrino energy using  $E_{\mu}$  and  $N_{hits}$

#### **Bjorken y (inelasticity)**

Use a PDF of the time residuals



Zenith resolution obtained for  $v_{\mu}$ -CC, as a function of the neutrino energy. Around 10° in the relevant energy range for tomography.

## Track reconstruction

#### **Direction:**

- Scan 7200 directions, chose the best
- Increase precision using a refined PDF of the time residuals (maximum likelihood fit)
- Finds the direction of the outgoing muon

#### **Energy and vertex**

- First find the vertex and the muon length, thus  $E_{\mu}$
- Obtain the neutrino energy using  $E_{\mu}$  and  $N_{hits}$

#### **Bjorken y (inelasticity)**

Use a PDF of the time residuals



Energy resolution obtained for  $v_{\mu}$ -CC, as a function of the neutrino energy. Around 30% in the relevant energy range for tomography.

## Shower reconstruction

#### **Vertex:**

 Maximum likelihood fit based on hit times PDF

#### Direction, energy and Bjorken y

- Joint PDF depending on the number of hits and their distribution in the detector
- Looks for the Cherenkov rings of the electron and/or the hadronic shower (see figures below)
- Reconstructs the direction of the electron (when present)

Figure: photon distribution from a  $v_e$ CC event with y = 0.5

top: at 20m bottom: at 50 m





## Shower reconstruction

#### **Vertex:**

 Maximum likelihood fit based on hit times PDF

#### Direction, energy and Bjorken y

- Joint PDF depending on the number of hits and their distribution in the detector
- Looks for the Cherenkov rings of the electron and/or the hadronic shower (see figures below)
- Reconstructs the direction of the electron (when present)



Angular resolution obtained for  $v_e$ -CC, as a function of the neutrino energy. Around 10° in the relevant energy range.

## Shower reconstruction

#### **Vertex:**

 Maximum likelihood fit based on hit times PDF

#### Direction, energy and Bjorken y

- Joint PDF depending on the number of hits and their distribution in the detector
- Looks for the Cherenkov rings of the electron and/or the hadronic shower (see figures below)
- Reconstructs the direction of the electron (when present)



Energy resolution obtained for shower events, as a function of the neutrino energy. Around 25% in the relevant energy range.

## Particle Identification

- Discern between track and shower-type events
- Random Decision Forest trained on MC events
- e-like CC events better than 80% above 6 GeV
- μ-like CC events around 80% (better for anti-v<sub>μ</sub>)



Probability that the PID algorithm identifies an event as a track as a function of the true neutrino energy. The lines denote different interaction types.

## Atmospheric muon rejection



- Atmospheric muons can be reconstructed as upgoing → background to the neutrino sample
- Rejection:
  - Select upgoing events
  - Apply quality cuts from reconstruction
  - Pseudo-vertex position (see plots on the right)
  - Boosted Decision Tree
- A %-level contamination can be achieved without loosing too much signal





Reconstructed vertex position top: neutrinos bottom: atmospheric muons

## Application to the Earth tomography

- Used a toy MC tool that can easily create oscillograms of interacting atmospheric neutrinos:
  - Honda flux + GENIE cross sections + GloBES probabilities
  - Applies ORCA resolutions, efficiencies and PID
- Modified PREM Z/A ratios of outer core and compared to the pure iron case

 $\chi^2$  map for Track events in the case that:

Model A = pure iron (Z/A = 0.4656) Model B = pure iron + 5wt% H (Z/A = 0.4920)



## Application to the Earth tomography

- Used a toy MC tool that can easily create oscillograms of interacting atmospheric neutrinos:
  - Honda flux + GENIE cross sections + GloBES probabilities
  - Applies ORCA resolutions, efficiencies and PID
- Modified PREM Z/A ratios of outer core and compared to the pure iron case

 $\chi^2$  map for Shower events in the case that:

Model A = pure iron (Z/A = 0.4656)Model B = pure iron + 5wt% H (Z/A = 0.4920)



## Application to the Earth tomography

- Used a toy MC tool that can easily create oscillograms of interacting atmospheric neutrinos:
  - Honda flux + GENIE cross sections + GloBES probabilities
  - Applies ORCA resolutions, efficiencies and PID
- Modified PREM Z/A ratios of outer core and compared to the pure iron case

Oscillation parameters from: <u>Gonzalez-Garcia, M.C. et al. JHEP</u> <u>1212 (2012) 123 arXiv:1209.3023</u>



## Summary

- The forthcoming KM3NeT/ORCA will study neutrino oscillations and will have some potential for conducting Earth tomography studies
- The current framework is preliminary and will be improved in the next future: one PhD student (Simon Bourret) and one post-doc (Joao Coelho) on this subject at APC!
  - Implement a new type of analysis based on pseudo experiments
  - Add systematic uncertainties
- Finding out plausible models on the market that can be potentially excluded: also exotic ones, non phi-symmetric, etc.
- Will continue working on this also in collaboration with our colleagues geologists from IPGP in Paris