

Idiomatic Python from idiomatic C++: removing
barriers to rapid scientific development

Toby St Clere Smithe

Project Overview

● New infrastructure in ROOT 6
– cling C++ interpreter

– based on LLVM → knows about modern C++

● “Point and go” C++ bindings
– just tell PyROOT / cppyy where the source or precompiled module

is, then use it like any Python extension!

● But: some things require manual tuning
– no one-one mapping from C++ to Python

● Longer term: loosen direct dependency on ROOT
● Code, tests and documentation should be merged soon!

“Pythonizations”

● The core of the project: how can we make interacting
with C++ more like idiomatic Python?
– for both the CPython and PyPy versions

● “Pythonizations” are strategies to implement this
camouflage.
– In particular, they are usually functions that are called

when a new type is instantiated.

– If the name of the new type matches a user-supplied
pattern, then the function applies some change to the
type.

New Pythonizations

● GIL policy: should this function release the GIL?
● Return value ownership policy (eg, for raw pointers)
● Smart pointer policy: do we “hide” the smart pointer?

– more on this later

● Class attribute renaming
● Adding overloads to class methods
● Class method composition
● Automatic transformation of getter and setter methods into

Python properties

C++ exception mapping

● Catches the C++ exception in the C++ part of
the wrapper (if it is of type derived from
std::exception) then uses the reflection
information to identify its full type

● Matches the full type against any user-defined
mappings; if a match is found, raises the
appropriate python exception with the C++
exception message (the C++ “what()”)

Type pinning

● Sometimes, it is desirable to cast objects explicitly
from one type to another

● Looking at ROOT-6073, it can be useful to do so
systematically

● This part of the project adds type pinning, so that
one can say, “instead of returning MyDerivedType,
give me MyBaseType every time”.

● It is now also possible to add exceptions to the
pinning, and cast objects individually.

Smart pointer handling:
memory management

● Because Python is garbage-collected, the user
doesn't usually think about memory
management

● Directly interfacing with C++ code forces us to
be more careful, since we want the C++ objects
by default to live as long as we need them, but
no longer
– sensible defaults, with manual tuning

Memory management

● For instance, if a C++ function returns by value,
we take ownership of the resulting object.

● If it returns by reference, we do not.
● But also if it returns by raw pointer, we do not,

because we do not know what semantics are
expected, and we want to be safe by default.
– We do not want to free memory prematurely, but

this leads to leaks.

Smart pointers

● Objects that hold a raw pointer, and encode the
associated ownership semantics
– eg, reference counting with shared_ptr or sole ownership with

unique_ptr

● Usually passed and returned by value
– when C++ code returns one, the Python wrapper takes

ownership (nb: not of the underlying pointer).

● If the smart pointer object is deleted, then its destructor
decides what to do with the underlying pointer.

● But the Python user doesn't care!
– only interested in using their type T, not shared_ptr<T> or

even my_smart_ptr<T>!

Manage smart pointers transparently
● Functions that return shared_ptr<T> now look like functions that

return T, and the resulting python wrapper objects can be treated
the same.
– Includes being passed to functions taking either raw T* or shared_ptr<T>

(but not any other smart pointer).

– Also possible to get a python object representing the associated smart
pointer directly, if the user so wishes.

– But if a python object wraps a raw T*, then it still cannot be passed
automatically to a function expecting a smart pointer: these must be
created explicitly.

● Still obvious to the user if some object is managed by a smart
pointer
– string representation says so

– _get_smart_ptr method returns not None.

● However, the point is that the user shouldn't have to care any more!

On-going and future work

● Buffer protocol

● Separation of layers and shared PyPy/CPython
internal API

Future work: buffer protocol

● Say you have a C++ object representing a
matrix.

● Then it would be nice if it were natively available
to NumPy operations.

● This requires changing the CPython type so that
it can answer questions like “how large is this
buffer? what is the associated memory layout?”

● (… PyPy buffer support is more rudimentary)

Future work: separation of layers

● Easy to imagine cppyy being broadly popular, outside of ROOT.
● But at the moment, the CPython version depends on a fairly

large set of core ROOT functionality, and is built from within the
ROOT tree, with all the attendant complexity.

● The PyPy version is quite different, but lags behind recent
developments in ROOT 6.

● Therefore, there is on-going work to separate the layers of cppyy
more satisfactorily, including refactoring the ROOT dependency
into a thin layer, and providing a minimal build tree for non-root
users.

● This would also help in unifying the PyPy and CPython versions.

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

