

Vectorization of Philox CBRNG on AVX2, AVX512 and
Extending Agner FOG's Vector Class Library for ARM NEON Support

Yigit Demirag

Advisor: Dr. Sandro Wenzel

Outline

1. Vectorization of Philox CBRNG *

2. ARM NEON Support for Agner FOG's Vector Class Library **

* * http://www.agner.org/optimize/vectorclass.pdf
* http://www.thesalmons.org/john/random123/

Part I: Vectorization of Philox CBRNG • Project Description

 PRNGs are deterministic algorithms in form of
uint_64t someRandomNumber = CBRNG(uint64_t key, uin64_t counter)

CBRNGs are widely used at CERN, especially in
MC Simulations in GEANT4 and ROOT.

Philox is a SP Network. S box is a simple Feistel
function with 72 rounds 64-bit [XOR, MUL]

L = B (R) = mullo(R, M)′
k

R = F (R) ⊕ L = mulhi(R, M) ⊕ k ⊕ L′
k

Part I: Vectorization of Philox CBRNG • The Mulhilo Bottleneck

The main problem in vectorization: 64-bit widening multiplication causing bottleneck.
static __inline__ uint64_t mulhilo64(uint64_t a, uint64_t b, uint64_t* hip) {
 __uint128_t product = ((__uint128_t)a)*((__uint128_t)b);
 *hip = product>>64;
 return (uint64_t)product;
}

There is no 64b x 64b -> 128b arithmetic as a vector instruction. Nor is there a vector

mulhi type instruction (high word result of multiply).

Haswell's MULX instruction was a scalar candidate (No effect on register flags, flexible

register use).

Karatsuba Multiplication Algorithm ? (Efficient for much bigger multiplications.)

Or a new multiplication algorithm designed for SIMD?

Part I: Vectorization of Philox CBRNG

Part I: Vectorization of Philox CBRNG • The New Algorithm
void muldwu1_AVX2(__m256i x, __m256i y, __m256i *lo, __m256i *hi) {
 __m256i lomask = _mm256_set1_epi64x(0xffffffff);

 __m256i xh = _mm256_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h
 __m256i yh = _mm256_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h

 __m256i w0 = _mm256_mul_epu32(x, y); // x0l*y0l, x1l*y1l
 __m256i w1 = _mm256_mul_epu32(x, yh); // x0l*y0h, x1l*y1h
 __m256i w2 = _mm256_mul_epu32(xh, y); // x0h*y0l, x1h*y0l
 __m256i w3 = _mm256_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h

 __m256i w0l = _mm256_and_si256(w0, lomask); //(* Not required at AVX512)
 __m256i w0h = _mm256_srli_epi64(w0, 32);

 __m256i s1 = _mm256_add_epi64(w1, w0h);
 __m256i s1l = _mm256_and_si256(s1, lomask);
 __m256i s1h = _mm256_srli_epi64(s1, 32);

 __m256i s2 = _mm256_add_epi64(w2, s1l);
 __m256i s2l = _mm256_slli_epi64(s2, 32); //(* Not required at AVX512))
 __m256i s2h = _mm256_srli_epi64(s2, 32);

 __m256i hi1 = _mm256_add_epi64(w3, s1h);
 hi1 = _mm256_add_epi64(hi1, s2h);

 __m256i lo1 = _mm256_add_epi64(w0l, s2l); //(* Not required at AVX512))
 //__m512i lo1 = _mm512i_mullo_epi64(x,y); //alternative AVX512 inst.

 *hi = hi1;
 *lo = lo1;
}

“ Alternative
instruction existed
only on AVX512, we

could have advantage
of vectorization

at Xeon Phi.

Part I: Vectorization of Philox CBRNG • AVX512(MIC) Implementation

Philox will benefit from larger vector registers in AVX512. Our goal was to provide an implementation that can be used and

benchmarked on the next generation hardware, specifically on Intel's Knights Landing(KNL) architecture.

FOG's VCL supports only KNL, but OpenLab contribution for Knights Corner(KNC) exists.

I vectorized Philox library both for KNC and KNL, via both library and macros. But, since the new vectorized multiplication

algorithm requires specific KNL instructions, we haven't benchmarked this work yet.

Part-II : ARM Support for Agner FOG's VCL • Project Description

We wanted to provide an easy-to-use ARM NEON support for Agner FOG's Vector Class Library.

The aim was to compile the same code for both Intel's SSE and ARM architecture.

We concentrated on single and double precision floating point operations of ARM NEON (v7 and v8), which

has 128-bit registers that can be used as 64bx2 or 32bx4 vector operations.

“ An ARM processor uses ~ 5-15 watts, a traditional computer can use up to 80 watts. Server farms have

on the order of tens of thousands of computers and so this translates to significant savings. However, in order

for this to work, parallel computing for the right type of computation or analysis must be exploited. Luckily,

HEP data analysis is highly parallelizable.

ARM

Intel SSE

 g++ -C -msse4.2 -O3 -ftree-vectorize -

std=c++11 -fabi-version=0

arm-none-linux-gnueabi-g++

-C -mfloat-abi=softfp -mfpu=neon -O3

Part-II : ARM Support for Agner FOG's VCL • Completed Parts for ARM v7

Current Progress

* Not implementable in ARM v7
** Not yet completed

yigitdemirag@gmail.com

yigitdemirag.com

Thank You!

“ I'm sorry for not being able to participate, I am on a Boeing 737-800 and

flying to Ankara for registration of my grad school at this very moment.

Yigit Demirag

