
Binary code browser
Student: Alin Mindroc (Romania)

Mentor: Dr. Sandro Wenzel

Main goals:

-Create two projects: web app and Eclipse plugin which could assist developers in the process of
browsing/analyzing binary code
-Create an abstract layer so that the web app / Eclipse plugin (Java) can communicate to ParseApi (C++)
-Generate call graphs for executables
-Generate histograms for assembly instructions
-Provide a “diff” view so that you could easily compare two functions
-Use a source to source parser to easily generate JNI - ready C++ sources
-Generate a mapping view (C/C++ -> assembly)

Eclipse
Views

sdf

Architecture

Input data
(executable files, object files,
static libraries, shared objects)

 Parsing layer

ParseAPI
InstructionAPI
SymtabAPI

Apache
Tomcat

Dino Web app

Backend (Java)

Parser
cache

Frontend (AngularJS)
● Histogram view
● Diff view
● Assembly listing
● Function browsing
● Sorting

 JNI Wrapper

C++

Java

Dino Eclipse plugin
(Java, Swing)

Parser
cache

Diff View:
● Lists Functions in executables
● Shows assembly for a function
● Generates diffs between any two

functions in two executables

Source View
Maps a line of source code to a sequence
of assembly addresses and vice versa

Dino Webapp:

Interactive web app which lets the user upload executable files and list functions, assembly code, generates histograms and diff views
between different functions’ assembly.

The input files can be categorized as:

1. Executable files, shared objects (.so) : big list of (address -> instruction) mapping, with some addresses labeled as functions
2. Static archives (.a) : contain more object files (.o) which contain address -> instruction mappings, so function names are not

unique in a static archive, one function is also identified by the object file where it is defined

Function lists can be sorted by name / address / size + object name for static archive files, can be searched.

Why ”Dino” : Dyninst (Dynamic Instrumentation) -> Dyno -> Dino

Demo time!

http://gsoc1.cern.ch:8080/dino

http://gsoc1.cern.ch:8080/dino
http://gsoc1.cern.ch:8080/dino

Dino plugin:

Eclipse plugin which implements some of the web app’s functionality in the Eclipse IDE.

It contains two views:

1. Diff view: offers the possibility to get a diff view between two function’s assembly code, it can also be used to browse the
contents of an executable file

2. Source view: offers a mapping between assembly and source code for an executable file:

Overall, this project proved to be more of a “software engineering” one, requiring:

● planning on what technologies to use
● learning how to use a tool only from its documentation and the support from its little community - Dyninst framework
● time management between working on the web-app and the plugin
● having to abandon some of the initial goals, based on how the project evolved and on the Dyninst framework limitations

(call graph)
● adding new functionalities which were not discussed initially (source to assembly mapping)

