
Extension of ROOT I/O customization
framework

Anna Smagina

Mentor: Philippe Canal

1 September 2015

Reminder about the Evolution Schema

Evolution Schema allows to support objects of old versions classes
without original compiled code.

Provides support of changed class definition by applying
the customization rules.

Example of the rule:
] pragma read sourceClass=”oldname”
version="[1-]"checksum=“[12345,23456]”
source=”type1 var; type2 var2;"
targetClass=“newname” target=”var3"
include=“<cmath> <myhelper>”
code=”{ ... ‘code calculating var3 from var1 and var2’ ... }"

2

Reminder about the task

Implement support for JIT-compilation of I/O rules.
With CINT (and also with Cling) rules are written into dictionaries
and compiled as a part of the user shared library. But with Cling
it is a possible to operate with rules directly.

Add support for I/O rules for nested objects.
The same version of a containing class can hold several versions
of the nested object’s class.

3

Support for JIT-compilation

What was done:
enabled reading of rules from file and check on target
members,
introduce a wrapper-function for the rule,
introduce JIT-compilation of the rule.

Also, I’ve tried to improve the perfomance of rules consistency check
– check on already existing in a memory rules in a case when user
works with several files with the same rules.
But results are not promissing :(

4

Improving the performance of rules consistency check

Previous implementation: linear search.
Current implementation: binary search. I’ve introduced a map with
the key composed of rules attributes – source class and target, or
even source class, target, version and checksum.

But it brings gain in effeciency only about 5-20% (depends on different
cases) with test on 20 files with 10 rules.

The following ideas could be tested:
use as key the hash value of rule presented as string,
when adding a rule into system, do fast check on already
existing rules, only if the rule is not yet loaded, do the full
procedure of adding a rule.

5

Support for nested objects

Required:
updates in the rule wrapper function,
extension of the TVirtualObject class (a proxy for representing
target in-memory object and input data).

Example of the rule:
]pragma read sourceClass=“Event"version="[2]"targetClass=“Event"
source=“Track fTrack;"target=“fId; fCompactTrack;"
code="{ if(onfile.fTrack->GetVersion() == 3)
{
fId = onfile.fTrack->GetMember<double>(id_fTrack_fB) +
onfile.fTrack->GetMember<double>(id_fTrack_fC);
onfile.fTrack->Load(fCompactTrack);
}
else if (onfile.fTrack->GetVersion() == 4)
{
fId = onfile.fTrack->GetMember<double>(id_fTrack_fB);
onfile.fTrack->Load(fCompactTrack);
}; }"

6

Updates in the rule wrapper function

Nested object type is replaced by TVirualObject.

Source object members are accessed via TVirtualObject methods.

Source object members are accessed by id (to avoid doing string
comparison while accessing proxified data).

7

Extension of TVirtualObject class

TVirtualObject

+ IsCollection() : bool
+ Size()
+ At(i : Int_t) : TVirtualObject*
+ GetMember<T>(id Int_t)
+ GetMember(id : Int_t) : TVirtualObject*
+ GetId(name : TString*) : Int_t
+ Load(address : void*) : bool
+ GetObject() : void*
+ GetClass()
+ GetClassVersion() : Int_t

• before GSOC

• after GSOC

8

