

Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

First Results and Prospects of the NOvA Experiment

Peter Shanahan Colloquium Prague V15 5 November 2015

Super-Kamiokande – 1st observation of v_{μ} Disappearance

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

The Current Questions

- The last 15 years have seen tremendous progress
 - $sin^2(2\theta_{23})$, Δm^2_{ATM} , $sin^2(\theta_{12})$, Δm^2_{21} , $sin^2(2\theta_{13})$ now well measured

 v_3

 v_2

 v_1

- Unanswered questions include
 - Leptonic CP violation: $sin(\delta_{CP}) \neq 0$?
 - Mass Ordering:
 - $m_3 > m_2, m_1 \text{ or } m_3 < m_2, m_1$
 - θ_{23} : Maximal? θ_{23} =45°
 - θ_{23} octant: if not maximal, is $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$ (is v_3 more v_{τ} or v_{μ} ?)
- Is there more to the picture than 3-flavor mixing?

Long Baseline $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Probability

 $\Delta = \Delta m_{31}^{2} L/4E \qquad A = \sqrt{2}G_{F}N_{e}2E/\Delta m_{31}^{2} \qquad \alpha = I\Delta m_{21}^{2}I/I\Delta m_{31}^{2}I$

 J_{CP} =sin2 θ_{12} sin2 θ_{13} sin2 θ_{23} cos θ_{13} sin $\delta_{CP}/8 \approx 0.03 sin(\delta_{CP})$ Jarlskog Invariant

5 Peter Shanahan I First Results from NOvA

Long Baseline $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

Long Baseline $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

Long Baseline $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

11/5/15

‡ Fermilab

‡Fermilab

Long Baseline $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

1 and 2 σ Contours for Starred Point

Hypothetical measurement corresponding to most favorable parameter values.

11/5/15

9 Peter Shanahan I First Results from NOvA

NOvA

NuMI Off-Axis ve Appearance experiment Study v_e and \overline{v}_e appearance to address open questions - Rich phenomenology of $P(v_{\mu} \rightarrow v_{e})$, $P(\overline{v_u} \rightarrow \overline{v_e})$ over long-baseline in matter Study v_{μ} disappearance Requirements 0 Excellent v_e identification and background rejection - Optimal matter effect for mass Ordering (MH) Maximal statistics Design • – High-Power, Narrow-band Beam, with v and \overline{v} modes Huge, Low-Z, totally active, tracking calorimeter Detector

🚰 Fermilab

NuMI Beam

- High beam power
 - NuMI/accelerator upgrade was a major part of the NOvA project
 - 520 kW achieved in June 2015. Expect 700 kW in coming year.
- $v \text{ and } \overline{v} \text{ beam modes}$

Location

- 14 mrad (11km) off the NuMI beam axis
 - Pion 2-body decay kinematics

$$E_{\nu} = \frac{0.43E_{\pi}}{1 + \gamma^2 \theta^2},$$

- Neutrino spectrum peaks around 1st oscillation maximum
- High energy tail suppressed: reduces Neutral Current π⁰ background
- As far as possible from Fermilab for maximum matter effect/Mass Ordering sensitivity
 - 810 km

NOvA Detector Technology

Event Topologies in NOvA

Event Topologies in NOvA vs. MINOS

Compare to representative event topologies in MINOS ironscintillator tracking calorimeter optimized for v_{μ} charged current

How Big a Detector Is Needed?

- For a very rough estimate, assume...
- we can get O(10¹³) pion decays per second in our beamline decay pipe
- Neutrinos in area A=1 cm² per decay at z=810 km, θ =14mr

$$F = \left(\frac{2\gamma}{1+\gamma^2\theta^2}\right)^2 \frac{A}{4\pi z^2}$$

- Where $\gamma = E_{\pi}/m_{\pi} = 100$ as representative
- F=5x10⁻¹⁴ v/decay/cm²
- Neutrino flux = $10^{13}x5x10^{-14} = 0.5 / cm^2 / sec$
- Cross section 10⁻³⁸ cm²/nucleon.
- For O(1) interaction/day, need
 - (10⁻³⁸ cm²/nucleon x 0.5/cm²/sec x 10⁵ sec/day)⁻¹ = 2x10³³ nucleons
 or 3.3 kt

Of course, simulations provide a more reliable number...

Far Detector

0000

Detector is mostly below grade
Overburden: 1.37m concrete + 0.15m
Barite (BaSO₄) for cosmic background reduction

0000

NOvA Far Detector ν_{μ} Candidate

NOvA Near Detector – Typical NuMI Spill

Calibration

 MIP energy deposition of cosmic muons used to correct attenuation in Wavelength Shifting Fiber

NOv A Preliminary 100 20000 80 Corrected response / cm 15000 60 10000 40 5000 20 200 300 400 500 100 Distance from track end (cm)

• Stopping muons provide absolute energy scale

Probing the energy scale calibration

Compare Predicted Far

Detector Interaction

Observe Near Detector Interaction Spectrum

550 μs NOvA Far Detector Beam Trigger Window

μs NOvA Far Detector Window around Beam Spill

Zoomed NOvA Far Detector Neutrino Event

26 Peter Shanahan I First Results from NOvA

v_{μ} Charged Current Event Selection

Cosmic Ray Background Rejection

NOVA

🚰 Fermilab

11/5/15

- Cosmic ray rejection
 - 10⁵ from beam timing
 - 10⁷ from event topology
 - Number of hits, energy, track length, position, direction

Cosmic rejection measured with out-of-time data

Neutrino Energy Determination

E_{had} tuned in Near Detector to give better agreement between Data and MC 21% uncertainty in E_{had} 6% in E_y

Far Detector Oscillation Results

🚰 Fermilab

NOvA Results

0.08

v_e Appearance

- Identify v_e candidates
 - Basic pre-selection
 - Multivariate v_e selectors
 - LID Likelihood ID:
 Electron shower shape likelihood- based ANN
 - LEM Library Event Matching: based on match of spatial pattern of event to library of 10⁸ simulated events
- Use Near Detector to predict Far
 - Beam backgrounds, $v_{\mu} \rightarrow v_{e}$ signal
- Characterize cosmic backgrounds in Far Detector timing sidebands
- Counting experiment: Interpret Far Detector excess as $v_{\mu} \rightarrow v_{e}$

0.025

Plane dE/dX (GeV/cm)

NOvA Preliminary

🛠 Fermilab

Selector Performance

NOvA Preliminary

- Overall performance and sensitivity identical
 - Chose more traditional LID as primary prior to unblinding

- 35 % signal efficiency (starting with contained events)
- 62% expected overlap between LID and LEM

11/5/15

🛟 Fermilab

Checking Selector Performance with Cosmic-ray induced showers

‡Fermilab

Cosmic-ray induced shower with muon removed

‡Fermilab

Cosmic Bremsstrahlung Energy & Efficiency

Data-driven check on performance of electron identification algorithms

LID Selection – Near Detector

NOvA Preliminary

11/5/15

😤 Fermilab

Far Detector Selected v_e CC Candidate

39 Peter Shanahan I First Results from NOvA

Far Detector Selected v_e CC Candidate

Peter Shanahan | First Results from NOvA

ν_{e} Candidate Events in the Far Detector

- LID: 6 v_e candidates - 3.3 σ significance
 - 5.50 Significance
 - LEM: 11 v_e candidates - 5.5 σ significance
- All LID events are selected by LEM
 - Mutual p-value 10%

•

NOvA v_e Appearance Result (LID)

- δ_{CP} , sin² θ_{13} allowed regions
 - Feldman-Cousins contours
 - $-\sin^2\theta_{23}$ fixed at 0.5
 - Marginalized over other parameters

δ_{CP} , Mass Ordering Significance with Reactor Constraint

- Apply global reactor constraint - $\sin^2\theta_{13}=0.086 \pm 0.05$
- Significant Feldman-Cousins corrections
- Both LID and LEM prefer normal mass ordering with $\pi < \delta_{CP} < 2\pi$
 - LID has some tension for Inverted Ordering near $\delta = \pi/2$
 - LEM disfavors Inverted Ordering at 2σ

Prospects

- Excellent performance in first year
 - Typical beam powers of 420 kW, but accelerator uptime has been higher than assumed
 - Detector up-times of greater than 95%

- Beam resumed in October following annual shutdown
 - Working back to 521 kW achieved shortly before shutdown
- 700 kW may be possible before Summer 2016
 - May require several more months depending on need for additional collimation in former anti-proton recycler
- Possible switch to anti-neutrino mode in mid-2016

44

🛟 Fermilab

Summary

- NOvA has produced its first oscillation results within a year of starting formal operations
 - Using less than 8% of planned exposure
- Compelling sensitivity for v_{μ} disappearance
- Same hints as T2K in favor of Normal Mass Ordering and CP violating enhancement of ν_e appearance
- Beam has resumed, aiming for 700 kW
- First NOvA neutrino interaction results expected soon
- Looking forward to updates on oscillation analyses at Neutrino2016 in July

Děkuji!

46 Peter Shanahan I First Results from NOvA

Backups

47 Peter Shanahan I First Results from NOvA

Mass Hierarchy – NOvA

CP Violation – NOvA

‡ Fermilab

θ_{23} Octant - NOvA

11/5/15

6 Nominal Design Years

