

Recent Results from the Daya Bay Reactor Neutrino Experiment

En-Chuan Huang University of Illinois at Urbana-Champaign (on behalf of the Daya Bay Collaboration)

Prague v15

- Neutrino Oscillation
- Daya Bay Experiment
- Latest Results
 - Precise measurement of θ_{13} and $|\Delta m_{ee}^2|$
 - Hydrogen capture
 - Sterile neutrino
 - Measured spectrum and rate

- Around 2010, θ_{23} and θ_{12} were determined as $\sin^2 2\theta_{12} = 0.87 \pm 0.03$ $\sin^2 2\theta_{23} > 0.92$
- However, $\sin^2 2\theta_{13}$ was constrained to be $\sin^2 2\theta_{13} < 0.15$
- Daya Bay was designed to measure $\sin^2 2\theta_{13}$ with sensitivity of 0.01

Design of Daya Bay

- Relative Measurement
 - Near and far detectors: minimize reactor related uncertainties
 - Identical modules:
 minimize detector related uncertainties
- Low Backgrounds
 - Large overburden at far site(860 m.w.e.)
- Large statistics
 - Large target mass: 8x20-ton detectors
 - Large neutrino flux: 6x2.9 GWth reactors

EH3

Far Hall 1615 m from Ling Ao I 1985 m from Daya Bay 330 m overburden

Entrance

3 Underground **Experimental Halls**

The Daya Bay Experiment

3 Experimental Halls (EH)

EH2

Ling Ao Near Hall 481 m from Ling Ao I 526 m from Ling Ao II 112 m overburden

Daya Bay Near Hall 363 m from Daya Bay 98 m overburden

Daya Bay Cores

Bav

Ling Ao II Cores Ling Ao I Cores

■ 17.4 GW_{th} power 8 operating detectors

160 t total target mass

Detection Method

Inverse beta decay (IBD) reaction

 $\overrightarrow{\nu}_{e} + p \rightarrow e^{+} + n$ Delayed Signal $\begin{array}{c}n + {}^{x}Gd \rightarrow {}^{x+1}Gd + \gamma's \quad \sim 30 \ \mu s \quad 8 \ MeV \\n + H \rightarrow D + \gamma \quad \sim 200 \ \mu s \quad 2.2 \ MeV\end{array}$

• Prompt signal:

 $E_{prompt} \approx E_{\overline{\nu}_e} - 0.8 \text{ MeV}$ Obtain neutrino spectrum information

 Delayed signal comes from neutron capture on both Gd and H: Independent check on the measured parameters

Daya Bay Antineutrino Detector (AD)

3-zone structure

Size	Zone	Liquid	Function		
3m	Inner	Gd-LS	Anti-neutrino		
20 ton	Acrylic		target		
4m	Outer	LS	Gamma		
22 ton	Acrylic		catcher		
5m	Stainless	MO	Radiation		
37 ton	Steel		Shield		
LS = Liquid Scintillator, MO= Mineral Oil					

• 192 PMT

- Top and bottom reflectors
- 3 Automatic Calibration Units (ACUs) sit on top

Automatic Calibration Units

arXiv:1508.03943

Daya Bay Muon Veto System

- Water Cerenkov Detectors
 - 2.5 m of water from any direction
 - Two optically-isolated detectors at each hall
 - Tags cosmic muons
 - Shields against low energy radiation from surrounding material
- Resistive plate chambers (RPCs)
 - Covers water pool for further muon tagging

Far Hall (EH3) Daya Bay

MALINIA PLANET

Automatic Calibration Units (ACUs)

Water Cerenkov Detector

RPC

Antineutrino Detector(AD)

Experimental Hall 1 (EH1)

Daya Bay Calibrataion

- PMT Gain:
 - Weekly deployment of LED from ACU
 - Single photoelectron from dark noise (every ~6 hours)
- Energy scale & Nonuniformity
 - ⁶⁰Co from ACU
 - Spallation neutrons captured by Gd
- Relative energy scale:
 - ACU: ⁶⁰Co, ⁶⁸Ge, AmC
 - Spallation: nGd, nH
 - Gamma: ⁴⁰K, ²⁰⁸TI
 - Alpha: ²¹²Po, ²¹⁴Po, ²¹⁵Po

The uncertainty of relative energy scale is < 0.2% 12

Energy Nonlinearity

- Sources of energy non-linearity
 - Scintillator response
 - Readout electronics

- Constrained by
 - Radioactive calibration sources
 - Spectra from physics runs, e.g.,
 ⁴⁰K and nH capture
 - Continuous spectrum from muon-induced ¹²B

Daya Bay Antineutrino Selection

Reject

- Muons tagged by either water Cerenkov detectors or AD
- Flashers: spontaneous PMT light emission
- Events with more than one coincidence (multiplicity cut)

Rates at EH3 are clearly lower than no oscillation prediction

Rate + Shape analysis is used

 10^{3}

10²

Prompt Reconstructed Energy [MeV]

EH3

<u>×10³</u>

Events/1MeV

Prompt Reconstructed Energy [MeV]

Daya Bay Backgrounds – Pairs Other than IBD

Backgrounds		Rates		Mimic process	
		Near	Far	prompt	delayed
Accid	entals	1.2%	2.0%	Accidental two triggers	
Cosmic muons	⁹ Li/ ⁸ He	0.4%	0.4%	β-decay	Neutron
	fast neutron	0.1%	0.07%	Neutron scatters in target	
Calibration source	AmC	0.04%	0.1%	Neutron inelastic scattering	Capture
Intrinsic radiation	¹³ C(α,n) ¹⁶ O	0.01%	0.07%	Neutron scatters/ ¹⁶ O* de-excitation	

Extracting $\sin^2 2\theta_{13}$ and $|\Delta m_{ee}^2|$

- Cross-checked between several fitters with different methods including
 - Full pull terms: each systematic term is constrained by a pull term in the χ^2
 - Full covariance matrix: The correlation between each energy bin is calculated through MC simulation
 - Pull terms + covariance matrix
- Data from 6AD and 8AD periods are carefully combined
- Consistent results

Results - Spectrum Daya Bay

Energy Spectrum at Far Site

18

Oscillation Probability with respect to L_{effective}/E_v

Daya Bay Oscillation Results

• From 6AD to 6+8AD, the precision improves for

- $\sin^2 2\theta_{13}$ from 9% to 6 %
- $|\Delta m_{ee}^2|$ from 7% to 5%
- The measurement of $\Delta m^2_{_{ee}}$ achieve similar Δm^2 precision as the muon neutrino disappearance channel

Current Status and Future Prospect

 Continue data-taking until the end of 2017

Daya Bay

- Currently still dominated by statistics
- Continue to improve systematics
- Anticipate ~3% precision for both sin²2θ₁₃ and |Δm²_{ee}|

Daya Bay Hydrogen Capture

	H (2.2 MeV)	Gd (8 MeV)
dt	400 µs	200 µs
E_p	[1.5, 12] MeV	[0.7, 12] MeV
E_d	3 σ	[6, 12] MeV
Distance	50 cm	N/A

- Longer capture time for hydrogen capture
- Raise prompt energy cut(0.7 to 1.5 MeV) and require prompt-delayed distance cut to remove accidental background

Daya Bay Hydrogen Capture

 Rate analysis of 217 days of 6-AD data:

 $\sin^2 2\theta_{13} = 0.083 \pm 0.018$

Rule out null hypothesis at 4.6 σ level

- Independent statistics
- Different systematics
- Potentially improve the final precision of $\sin^2 2\theta_{13}$

PRD 90, 071101 (R) 2014 23

- Global average of the reactor neutrino rates is lower than the prediction without oscillation
- LSND & MiniBooNE observed excessive events for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- Both can be explained by the existence of sterile neutrino

- $\sin^2 2 heta_{14} \sin^2 \left(rac{\Delta m^2_{41} L}{4E_
 u}
 ight)$
- A minimum 3+1
 extension of
 Standard Model is
 used
- Light sterile neutrino¹ might distort relative energy spectrum

Sterile Neutrino Search

Daya Bay

 Daya Bay's unique configuration of multiple baselines allows to cover a large region of parameter space

Exclusion Region (6AD)

- Different baseline combinations provide sensitivities at different mass squared splitting range
- Best result in a previously unexplored region

Daya Bay

A factor of 2 improvement expected from 6 AD to 6+8 AD.
 Another factor of 2 improvement expected by the end of 2017 ²⁷

Absolute Reactor Neutrino Flux

Measured Flux

 $Y_0 = (1.55 \pm 0.04) \times 10^{-18} \text{ cm}^2/\text{GW/day}$ $\sigma_f = (5.92 \pm 0.14) \times 10^{-43} \text{ cm}^2/\text{fission}$

- Measured flux is consistent with previous reactor experiments
- Data / Prediction: R(Huber+Mueller)= 0.946 ± 0.022 R(ILL+Vogel) = 0.991 ± 0.023
- Possible indication of the existence of sterile neutrinos with $\left|\Delta m^2_{41}\right|\gtrsim 0.5~\text{eV}^2$

Measured Positron Spectrum

Daya Bay

- Prompt spectrum is compared with Huber+Mueller (ILL+Vogel) model
- For the whole energy range, the measured spectrum deviates from both models by $\sim 2\sigma$
- Between 4~6 MeV, the excess is up to $\sim 4\sigma$

- The precision of $\sin^2 2\theta_{13}$ in our new 6+8 AD measurement has reached 6% level
- The precision of $\left|\Delta m^2_{ee}\right|$ has reached 4% level, comparable to the results from T2K & MINOS
- The nH analysis gives an independent measurement of $\sin^2 2\theta_{13}$
- Daya Bay has the most stringent constraints on sterile neutrino for $10^{-3}~eV^2<\left|\Delta m^2_{41}\right|<0.1~eV^2$
- The rate and flux of reactor neutrinos are measured at Daya Bay. An excess up to 4σ is found at ~5 MeV

Thank You!

Europe (2)

JINR, Dubna, Russia Charles University, Czech Republic

Asia (23)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Univ.Tech., IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Xi'an Jiaotong Univ, NUDT, ECUST, Congqing Univ, Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Daya Bay Collaboration

America (16)

BNL, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary Yale Catholic Univ, Chile

Backup

Reactor Antineutrino Spectrum

Daya Bay

Reactor antineutrino spectrum is extracted by applying detector response model unfolding as a model-independent prediction

Correlation between nH and nGd Analysis

	Uncorrelated uncertainty	Coupled
N _{p.GdLS}	0.03%	yes
N _{p.LS}	0.13%	no
$N_{p,\text{Acrylic}}$	0.50%	no
$\varepsilon_{ep,v}$	0.1%	yes
$\varepsilon_{ed,v}$	0.5%	no
$\varepsilon_{t,v}$	0.14%	yes
ε_d	0.4%	no
Combined	0.67%	

Daya Bay

The correlation coefficient is found to be 0.05

Side by Side Comparison

Daya Bay

Detectors function identically

• At Daya Bay, results are from fitting the data with the two-flavor approximation: $(Am^2 I)$

 $P(\overline{\nu}_{e} \to \overline{\nu}_{e}) \approx 1 - \sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{ee}^{2}L}{4E_{\nu}}\right) - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\left(\frac{\Delta m_{ee}^{2}L}{4E_{\nu}}\right)$

 This enables to represent our result independent of mass hierarchy

$$\begin{split} |\Delta m_{ee}^2| &= |\Delta m_{32}^2| \pm \Delta m_{\phi}^2/2 \\ &= |\Delta m_{31}^2| \mp (|\Delta m_{21}^2| - \Delta m_{\phi}^2/2) \\ \Delta m_{\phi}^2 &= \phi \times \frac{4E}{L}. \\ \phi &= \tan^{-1} \Big(\frac{\sin 2\Delta_{21}}{\cos^2 \Delta_{21} + \tan^2 \theta_{12}} \Big) \end{split}$$

$$\Delta m_{\text{eff}}^2|_e = \cos^2 \theta_{12} |\Delta m_{31}^2| + \sin^2 \theta_{12} |\Delta m_{32}^2| = |\Delta m_{32}^2| \pm \cos^2 \theta_{12} \Delta m_{21}^2.$$

Reactor Neutrino Anomaly

- At low energy ($E_{\nu} < 4$ MeV):
 - Implementation of Columb and weak magnetism interaction
 - **Correction =** $(0.65 \times (E_{\nu} 4 \, MeV) \, in \, \%)$
- At high energy ($E_{\nu} < 4$ MeV):
 - Sensitive to the charge Z of the nuclei
 - Old: mean dependence of Z is used
 - New: complete distribution is used

PRD 83, 073006 (2011)