

Single Top-Quarks

Production via three distinct channels

- Single top-quarks are produced via the weak interaction
- t-channel production is the dominant mode, the associated Wt and s-channel contibute about 1/3 of the combined cross-section

Day in 2012

Multivariate Techniques

Multiy Variate Analysis(MVA)

- Almost all presented single-top quark analysis employ MVAs to increase sensitivity
- Reduce systematic dependence by averaging
- Three distinct MVA methods are used:

Artificial Neural Networks(NN) Boosted Decision Trees(BDT) Matrix Element Method(MEM)

ΝN

 Several discriminating observables are linearly combined a single discriminant

BDT

 Consecutive cuts on several discriminating observables are optimized iteratively, a single discriminant is obtained

Output

laver

Hidden

laver

Input layer

B C D

 θ_1

Е

 $\theta_A x_1$

MEM

- An event-by-event calculation yields a probability to originate from a given process
- Likelihood ratios are used to derive discriminant distributions

 $\mathcal{P}(\mathbf{x}|H) = \frac{1}{\sigma \epsilon} \sum_{\mathbf{p} \in \{\text{perms}\}} \int dx_1 dx_2 \sum_{j,j} f_j(x_1) f_j(x_2) \cdot \int d\mathbf{y} \frac{\|\mathcal{M}_{i,j}^H(\mathbf{y})\|^2}{2x_1 x_2 s}$

t-channel cross-section

Strategy I

- μ + 2 jets
- High $E_{\rm T}^{\rm miss}/m_{\rm T}(\ell \ E_{\rm T}^{\rm miss})$
- ML fit to NN based discriminant

Strategy II

- NN uses 10 well modelled observables to yield good signal/background separation
- Measure $\sigma(tq)$ and $\sigma(\bar{t}q)$ separately, using the μ charge

ATLAS-CONF-2015-079

t-channel cross-section

16.06.2016

- Statistical analysis based on pseudo experiments
- Systematic uncertainties are dominated by: signal generator choice, b-tagging, Data/MC statistics
- Total uncertainty 19%(top)/25%(antitop)

• $|V_{tb}| > 0.78@95\%$ C. L.

ATLAS-CONF-2015-079

Anomalous couplings

Single top in ATLAS | LHCP 2016 | BUW - Phillipp Tepel

JHEP 1604 (2016) 023

Anomalous couplings

Uncertainties

- Determined by MC samples with parameter variations
- Extract covariance matrices and correlations
- Dominating: statistics, jet energy scale, signal generator

Results

•
$$\operatorname{Re}\left[\frac{g_R}{V_L}\right] = -0.13 \pm 0.07(stat.) \pm 0.10(syst.)$$

 $\Rightarrow Re\left[\frac{g_R}{V_L}\right] \in [-0.36, 0.10]$
• $\operatorname{Im}\left[\frac{g_R}{V_L}\right] = 0.03 \pm 0.06(stat.) \pm 0.07(syst.)$
 $\Rightarrow Im\left[\frac{g_R}{V_L}\right] \in [-0.17, 0.23]$

JHEP 1604 (2016) 023

Search for FCNC

Strategy

- Search for anomalous single-top quark production
- 1 charged lepton, $E_{\rm T}^{\rm miss}$ and one b-tagged jet
- Construct NN discriminant using 13 well-modelled observables

Eur.Phys.J.C76(2016)55

Search for FCNC

- Evaluate systematic uncertainties using pseudo experiments
- Dominant: jet energy scale/resolution, flavour tagging and PDFs

Results

- No signal is observed hence upper limits are derived
- $\sigma_{qg \rightarrow t} \times \mathfrak{B}(t \rightarrow Wb) < 3.4 \text{ pb}$
- $\mathfrak{B}(t \rightarrow ug) < 4.0 \times 10^{-5}$
- $\mathfrak{B}(t \to cg) < 20 \times 10^{-5}$

Eur.Phys.J.C76(2016)55

Strategy

b-jet

Events

Data/Pred.

12000

10000

8000

6000

4000

2000

1.2

0.8

500 • Di-lepton (op. charge) +1 400 300 200 • Main background: $t\bar{t}$ 100 ML fit to BDT based Data/Pred. 1.2 discriminant -0.3 -0.2-0.1 Strategy II 14000 **⊢ ATLAS** Data √s = 8 TeV, 20.3 fb⁻¹ Wt 1 or 2 jets Others 1/// Uncertainty background the regions 1-jet 1-tag 2-jet 1-tag 2-jet 2-tag 1-jet 0-tag 2-jet 0-tag Regions

Wt-channel measurement

gley

PLB(2016), pp. 228-246

3

16.06.2016

Data

s-channel

t-channel

W+jets

Z+jets, diboson Multi-jet Post-fit uncertainty

0.187

vs = 8 TeV, 20.3 fb

0.187

P(S|X)

ATLAS

Signal region

P(S|X

Single top-quark cross-sections

V_{tb} measurements

Measurements

- The SM predicts $f_{LV} = 1$, and $V_{tb} \approx 1$
- Measurements in single-top processes do not constrain the number of quark generations
- Currently best constraint on $|f_{LV} \cdot V_{tb}|$ by CMS 7+8 TeV with 4% uncertainty

Assumptions

- $|V_{tb}| \gg |V_{ts}|, |V_{td}|$
- Wtb interaction involves a SMlike left-handed weak-coupling

ATLAS+CMS Preliminary	LHC <i>top</i> WG	June 2016
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tbeo}}}$ from single top quar	rk production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010 PRD81 (2010) 054028	0) 054018,	<u> </u> ₹ <u> </u>
$\Delta\sigma_{ ext{theo}}$: scale \oplus PDF		total theo
m _{top} = 172.5 GeV		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$
t-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	┣ ╶┋ ═┼╌┥	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	} —_ += † <u></u> 1	$0.97 \pm 0.09 \pm 0.02$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	<mark>I ≜ei I</mark>	$1.020 \pm 0.046 \pm 0.017$
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ ie£ I	$0.979 \pm 0.045 \pm 0.016$
CMS combined 7+8 TeV JHEP 06 (2014) 090	H	$0.998 \pm 0.038 \pm 0.016$
CMS 13 TeV CMS-PAS-TOP-16-003 (2.3 fb ^{−1})	⊢ ∔∎∔⊸1	$1.02 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb⁻¹)	▶ 	$1.03 \pm 0.11 \pm 0.02$
Wt:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	▶ → ↓ ■ ↓ → ↓	$1.03 {}^{+ 0.15}_{- 0.18} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	F+®+1	$1.01^{+0.16}_{-0.13}$ + 0.03 -0.04
ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	P	$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,2} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	₽ _<u>1</u> ₽ 1	$1.02 \pm 0.08 \pm 0.04$
s-channel: ATLAS 8 TeV ² PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 ^{+0.18}_{-0.20} \pm 0.04$
		 including top-quark mass uncertainty including beam energy uncertainty
0.4 0.6 0.	.8 1 1.2	1.4 1.6 1.8
	f _{LV} V _{tb}	

Run-1 analyses are being finalised

Outstanding LHC performance will provide a large 13 TeV dataset for 2016 (2 fb⁻¹ two weeks ago alone!)

Many interesting 8 TeV analysis can be improved at 13 TeV

t-channel cross-section

Source	$\Delta \sigma_{tq} / \sigma_{tq} \ [\%]$	$\Delta\sigma_{ar{t}q}/\sigma_{ar{t}q}$ [%]
Data statistics	± 4.6	± 5.0
MC statistics	\pm 6.3	\pm 6.5
Multijet normalisation	± 0.8	± 2.4
Other background normalisation	± 1.4	± 0.5
Muon uncertainties	± 1.6	± 1.6
JES	± 5.5	± 1.6
Jet energy resolution	± 4.3	± 3.1
$E_{\rm T}^{\rm mass}$ modelling	± 4.2	± 4.5
b-tagging efficiency	\pm 7.1	\pm 7.5
c-tagging efficiency	< 0.5	< 0.5
Light-jet tagging efficiency	< 0.5	< 0.5
Pile-up reweighting	± 1.2	\pm 3.2
W + jets modelling	± 23	± 1.0
\overline{t} Wt and a sharped shower concreter	± 2.3	$\perp 1.0$ $\perp 2.2$
$t\bar{t}, Wt$ and s-channel shower generator	< 0.5	± 2.3
$t\bar{t}, W t$ and s-channel NLO matching	± 2.7	± 7.0
tt, Wt and s-channel scale	± 2.6	± 0.9
t-channel scale	± 5.9	± 7.7
t-channel generator	± 11.0	± 15.0
PDF	< 0.5	± 1.0
Luminosity	\pm 5.0	\pm 5.0
Total systematic uncertainty	+ 18.4	+ 24.4
Total uncertainty	± 10.4	± 24.4 ± 25.0
100ar uncertainty	- 1 <i>9</i> .0	<u> </u>

FCNC

Source	Expected 95 % CL upper limit [pb]	Change in the upper limit [%]
Normalisation & MC statistics	1.5	-
Multi-jets normalisation and modelling	1.8	25
Luminosity	1.5	5
Lepton identification	1.5	3
Electron energy scale	1.6	8
Electron energy resolution	1.5	4
Muon momentum scale	1.5	1
Muon momentum resolution	1.5	5
Jet energy scale	1.6	8
Jet energy resolution	1.9	32
Jet reconstruction efficiency	1.5	4
Jet vertex fraction scale	1.5	3
<i>b</i> -tagging efficiency	1.5	3
<i>c</i> -tagging efficiency	1.5	4
Mistag acceptance	1.5	2
$E_{\rm T}^{\rm miss}$ modelling	1.9	34
PDF	1.5	5
Scale variations	1.5	2
MC generator (NLO subtraction method)	1.6	8
Parton shower modelling	1.5	5
All systematic uncertainties	2.9	-