13 TeV Non-BSM Higgs Results From CMS

John Stupak III on behalf of the CMS Collaboration

6/13/16

Run I Non-BSM Higgs Summary

See talk by Silvio Donato for more detail

²

Run I Non-BSM Higgs Summary

John Stupak III - Purdue University Calumet

6/13/16

Pseudoexperiments

2

Particle mass (GeV)

Run II Non-BSM Higgs Studies

- Rediscovering the Higgs at 13 TeV
 - H→ZZ*→4ℓ [CMS-PAS-HIG-15-004]
 - $H \rightarrow \gamma \gamma$ [CMS-PAS-HIG-15-005]
- Searches for rare/challenging process
 - VBF H→bb [CMS-PAS-HIG-16-003]
 - HH→bbττ [CMS-PAS-HIG-16-012]
 - ttH (See talk by Eleni Ntomari for details)
 - H→multileptons [CMS-PAS-HIG-15-008]
 - H→bb [CMS-PAS-HIG-16-004]

Brand New!

$H \rightarrow ZZ^* \rightarrow 4\ell^*$

- High-resolution, fully-reconstructible final state
- Similar strategy to Run I
 - Signal model taken from fits to POWHEG+JHUGen MC for various Higgs masses
 - Irreducible qq(gg)→ZZ modeled with POWHEG (MCFM) MC
 - k-factor(m_{ZZ}) takes MC to NNLO
 - Reducible backgrounds estimated by combining 2 data-driven methods
 - Exploit full kinematic information via MELA discriminant:

$$\mathcal{D}_{\rm bkg}^{\rm kin} = \frac{\mathcal{P}_{\rm sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{\rm sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell}) + \mathcal{P}_{\rm bkg}^{q\overline{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}$$

CMS Preliminary 2.8 fb⁻¹ (13 TeV Events / 0.1 Data H(125) $qq \rightarrow ZZ, Z\gamma^{3}$ \rightarrow **ZZ**, **Z** γ^{3} Z + X $118 < m_{4l} < 130 \text{ GeV}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 D^{kin}bkg

 $\vec{\Omega}^{H \to 4\ell} = 8$ variables (3 masses + 5 angles) which fully characterize the matrix element 6/13/16 John Stupak III - Purdue University Calumet

CMS-PAS-HIG-15-004 $H \rightarrow \angle$

Signal extraction via 2D fit: **CMS** Preliminary 2.8 fb⁻¹ (13 TeV) $\mathsf{D}^{\mathsf{kin}}_{\mathsf{bkg}}$ Events / bir 0.9 4μ **2e2**µ 0.8 0.7 0.08 0.6 0.5 0.06 0.4 0.04 0.3 0.2 0.02 0.1 130 160 170 100 110 120 140 150 m₄₁ (GeV)

Observed (expected) significance @ $m_H =$ 2.5σ (3.4σ)

Best fit: $\mu = 0.82^{+0.57}_{-0.43}$

- Another rare, yet high-resolution decay mode
- Sophisticated analysis required to extract signal
 - Similar to Run I analysis (categorize \rightarrow bump hunt)
- Excellent photon energy resolution essential
 - Energy corrections
 - Crystal-by-crystal response
 - Shower containment, material effects (MVA)
 - Shower shape, position, preshower info, pileup observables
 - Residual corrections ($Z \rightarrow ee$)

Primary Vertex (PV) ID

- Observables related to tracks roiling against the γγ system
- Tracks from conversions

VV

Correct PV Probability

- Vertex multiplicity
- Conversion multiplicity

2.7 fb⁻¹ (13 TeV) **CMS** Preliminary 0.25 $Z \rightarrow \mu \mu$ Correct vertex : data 0.2 Correct vertex : simulation Misassigned vertex : data 0.15 Misassigned vertex : simulation 0.1 0.05 0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Vertex probability estimate

Primary Vertex (PV) ID

- Observables related to tracks roiling against the γγ system
- Tracks from conversions

V1 V2 V3

Correct PV Probability

- Vertex multiplicity
- Conversion multiplicity

• $p_T(\gamma\gamma)$

Photon ID

- Shower shape observables
- Isolation

6/13/16

- Photon kinematics
- Median energy density of event

γ₁ γ₂

$H \rightarrow \gamma \gamma$ Classifier

γγ kinematics (excluding mass)
m(γγ) resolution (right PV choice)
m(γγ) resolution (wrong PV choice)

Events categorized based on $m(\gamma\gamma)$ resolution, S/B, and production mechanism Untagged₀

$\rightarrow \mathcal{V}\mathcal{V}$

H→bb

- Important to establish coupling of Higgs to downtype quarks
- Hopeless to observe through gluon fusion at LHC
 - Focus instead on more distinctive production modes
- Run I results:

\underline{q}	(\xrightarrow{q}	
$\widetilde{W, Z}$	$\sum_{i=1}^{i}$	H<	\overline{b}
W, Z_{c}	5		b
q		$\begin{array}{c} q \\ \longrightarrow \end{array}$	

[1506.01010]	VBF	VBF+VH+ttH
μ	$2.8^{+1.6}_{-1.4}$	$1.03\substack{+0.44 \\ -0.42}$
Significance observed (expected)	2.2σ (0.8σ)	2.6σ (2.7σ)

- Challenging all-hadronic final state
 - Dominant background: QCD

Triggering is a challenge

- 2000Strategy (similar to Run I)
 - Trigger on forward jets + central b-jet(s)
 - Categorize events based on MVA discriminant
 - Model QCD background as smoothly falling function
 - Search for bump in m_{bb}

m(bb)

S.C

Brand New!

- Trigger
 - 4 jets (p_T > 92/76/64/15 GeV)
 - 2 b-jets + $\Delta \Phi_{bb}$ < 3.2 + m_{qq} > 200 GeV + $\Delta \eta_{qq}$ > 1.2 OR
 - 1 b-jet $+ \Delta \Phi_{bb} < 1.6 + m_{qq} > 460 \text{ GeV} + \Delta \eta_{qq} > 4.1$

Brand New! CMS-PAS-HIG-16-003 VBF H(bb)

- Offline selection
 - Same kinematic cuts as trigger, except:
 - p_T(j₄) > 30 GeV
 - $\Delta \Phi_{bb} < 2.4$ (double tagged events)

Pileup jet ID applied ($\epsilon_S \approx 99\% / \epsilon_B \approx 10\%$)

CMS-PAS-HIG-16-003 VBF H(bb)

color

H

W, Z

W, Z

- Event categorization based on BDT (with minimal correlation to m_{bb})
 - Quark/gluon discrimination: jet minor-axis width σ₂
 [CMS-PAS-JME-13-002]
 - Color flow: soft track-jet multiplicity outside of b jets
 - Plus:

Brand New!

CMS-PAS-HIG-16-003 VBF H(bb)

 Regression trained to correct jet p_T improves m_{bb} resolution by 7%

Brand New!

- Targets semileptonic b decays that lead to mismeasurement due to undetected neutrino
- Trained using tt events, validated with Z+jets
- Signal extracted from simultaneous fit to mbb across 7 categories
 - Signal: Crystal ball + 3rd order polynomial
 - QCD: 5th (4th) order polynomial for single (double) tagged categories times a transfer function
 - Transfer function accounts for shape differences between categories (derived in m_{bb} sidebands)

Simultaneous fit in 7 signal regions

1 b-tag

2 b-tag

Observed (expected) 95% CL exclusion:

 $\mu > 3.0 (5.0)$ John Stupak III - Purdue University Calumet

Combination with Run I analysis

Observed (expected) 95% CL exclusion: $\mu > 3.4$ (2.3)

Run I + 2015 combined result: $\mu = 1.3^{+1.2}_{-1.1}$

Observed (expected) significance: 1.2σ (0.95σ)

Non-resonant HH production

Measurement of Higgs trilinear coupling provides important consistency check of SM Higgs Mechanism

$$V = \frac{1}{2} \frac{(2\lambda\nu^2)H^2}{m_H^2} + \lambda\nu H^3 + \frac{\lambda}{4}H^4$$

Accessed through pair production:

HH cross section particularly sensitive to new physics

John Stupak III - Purdue University Calumet

 $= y_t /$

 \mathcal{K}_{t}

$\frac{\text{CMS-PAS-HIG-16-012}}{\text{H(bb)H(}\tau\tau\text{)}}$

- Due to small cross section, must focus on decays with large BR
 - Triggering is difficult in a 4b final state
 - $bb\tau\tau$ mode permits triggering and has relatively large cross section
- Consider 3 most sensitive final states: $bb+\tau_h\tau_h/e\tau_h/\mu\tau_h$
 - Triggers
 - $au_h au_h$ channel: 2 au_h
 - $\ell \tau_h$ channels: 1 ℓ
 - Dominant background: top pairproduction

$\frac{\text{CMS-PAS-HIG-16-012}}{\text{H(bb)H(}\tau\tau\text{)}}$

Events/bir

250

200

150

100

50

-0.8 -0.6

CMS

300 preliminary channel

bb $\mu \tau_{h}$

• Offline selection:

2 OS leptons

2 "loose" b-jets ($\epsilon_b \approx 85\%$ / $\epsilon_q \approx 8\%$)

 $80 \text{ GeV} < m_{\tau\tau}(m_{bb}) < 160 \text{ GeV}$

- Additional requirement on MVA discriminant (BDT) in leptonic channels
 - Trained to reject top pair-production based on angular observables
 - $\Delta \phi(h_{bb}, h_{\tau\tau}), \Delta \phi(h_{\tau\tau}, MET), \Delta \phi(h_{bb}, MET), \Delta R(b, b), \Delta R(\ell, \tau_h)$

εs≈80% / ε_B≈15%

2.7 fb⁻¹ (13 TeV)

Data

QCD

Drell-Yan

Other bkg.

 $k_{\lambda} = 1$ (SM)

 $\sigma_{_{\rm SM}} \times 10^4$

0.2

-0.2

-0.4

0

Bkg. uncertainty

tŦ

$\frac{\text{CMS-PAS-HIG-16-012}}{\text{H(bb)H(}\tau\tau\text{)}}$

- Background estimation
 - QCD
 - Yield: Taken from SS CR scaled by ratio of OS/SS yields in CR with relaxed isolation
 - Shape: Taken from SS CR with relaxed isolation
 - Top pair-production
 - MC with shape corrections to top p_T
 - Z+jets
 - MC with flavor-dependent SFs derived in CRs with 0,1,2⁺ b-jets (simultaneously fit with SR)

CMS-PAS-HIG-16-012 $H(bb)H(\tau\tau)$

Test for signal in m_{hh}

Process	bb $\mu au_{ m h}$	bbe $ au_{ m h}$	$bb\tau_h\tau_h$
tī	45.5 ± 5.7	25.0 ± 3.2	2.2 ± 0.3
QCD	1.2 ± 1.0	5.2 ± 2.3	1.2 ± 1.0
Z+jets	5.2 ± 1.7	2.1 ± 0.7	1.3 ± 0.4
W+jets	0.9 ± 0.2	1.1 ± 0.2	-
single top	2.0 ± 0.2	1.1 ± 0.1	-
di-boson	0.4 ± 0.1	0.08 ± 0.02	0.11 ± 0.02
Total expected background	55.2 ± 6.0	34.6 ± 4.0	4.8 ± 1.2
$k_{\lambda} = 1$	$(3.2 \pm 0.3) \cdot 10^{-2}$	$(1.7 \pm 0.2) \cdot 10^{-2}$	$(2.1 \pm 0.2) \cdot 10^{-2}$
$k_{\lambda} = 20$	1.0	0.55	0.76
DATA	59	30	4

2.7 fb⁻¹ (13 TeV)

CMS-PAS-HIG-15-008 ttH(multileptons)

See talk by Eleni Ntomari for details

tth(bb) CMS-PAS-HIG-16-004

See talk by Eleni Ntomari for details

Summary

- On the way to rediscovery of the Higgs at 13 TeV
- As with Run I, so far all results consistent with the SM
- Generally, more data is needed to compete with Run I analyses
 - New results with 2016 data coming soon!