13 TeV non-BSM Higgs results from ATLAS

Carlos Solans On behalf of the ATLAS Collaboration LHCP 2016

Outline

√s = 13 TeV

ATLAS Preliminary

LHC Delivered **ATLAS Recorded**

Total Delivered: 4.2 fb⁻¹

Total Recorded: 3.9 fb⁻¹ All Good for Physics: 3.2 fb

All Good for Physics

- SM Higgs results from Run 2 with the ATLAS experiment (with IBL)
 - $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{*}(4l)$ and combination
 - HH \rightarrow bbyy and bbbb

12/06

1/11

SM Higgs boson production at the LHC

- Consider $m_H = 125.09 \text{ GeV}$
 - ATLAS+CMS @ √s=8 TeV
 - PhysRevLett.114.191803
- Gluon Fusion (ggF)
 - gg → H
 - **86.2%**
- Vector Boson Fusion (VBF)
 - qq → qqH
 - **7.4%**
- Associated production with vector bosons (VH) or ttbar (ttH)
 - $qq \rightarrow WH, ZH, ttH+bbH$
 - 2.7%, 1.7%, 1%
- Scaling with \sqrt{s}
 - $gg \rightarrow H : \sigma_{13TeV} / \sigma_{8TeV} : 2.3$
 - $qq \rightarrow qqH : \sigma_{13TeV} / \sigma_{8TeV} : 2.5$
 - qq → WH, ZH, ttH: σ_{13TeV}/σ_{8TeV}: 1.9, 2.1, 3.9

(*arXiv:1101.0593*, *arXiv:1201.3084* and *arXiv:1307.1347*) https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

SM Higgs boson decays at the LHC

- Higgs boson decay channels at m_H = 125.09 GeV are
 - H → bb
 - BR (H → bb): 58.1 %
 - Large BR, Yukawa coupling
 - H → WW
 - BR (H → WW): 21.5 %
 - Large BR, gauge boson coupling
 - $H \rightarrow \tau \tau$
 - BR (H→ ττ): 6.3 %
 - Yukawa coupling
 - $H \rightarrow ZZ$
 - BR (H → ZZ): 2.8 %
 - BR $(H \rightarrow ZZ \rightarrow 4l)$: 0.0125 %
 - High mass resolution, high S/B, gauge boson coupling
 - $H \rightarrow \gamma \gamma$
 - BR (H → γγ): 0.23 %
 - High mass resolution, loop coupling dominated by gauge boson coupling

CERN Yellow Report IV

Higgs to yy channel search

- Clear signature over backgrounds
 - Continuum yy
 - π⁰ from jet fragmentation mis-identified as photons in γ-jet and jet-jet
 - Drell-yan events with both electrons misidentified as photons
- Changes with respect to Run 1
 - Optimized identification, calibration, isolation and vertex conditions
- Event selection
 - Fiducial coverage excluding crack region 1.37< |η| <1.52 (1.56 in Run1)
 - Tight photon ID to reject hadronic or jet background
 - High primary vertex efficiency

Fiducial selection at particle level

Two highest- $p_{\rm T}$ photons:	$ \eta^{\gamma} < 2.37$
Relative- p_{T} :	$E_{\mathrm{T},1}^{\gamma}/m_{\gamma\gamma} \geq 0.35, E_{\mathrm{T},2}^{\gamma}/m_{\gamma\gamma} \geq 0.25$
Mass window:	$105 \mathrm{GeV} \le m_{\gamma\gamma} < 160 \mathrm{GeV}$
Photon isolation:	$E_{\rm T,iso} < 0.1 \times E_{\rm T}^{\gamma} + 1 {\rm GeV}$

Higgs to yy signal extraction

• Signal extracted from likelihood fit

 $N_{\text{exp}} = 143 \pm 71(\text{stat.}) {}^{+39}_{-6}(\text{syst.})$ $N_{\text{S}} = 113 \pm 74(\text{stat.}) {}^{+43}_{-25}(\text{syst.})$

• Dominant systematic uncertainties:

Component	Uncertainty [%]
Total fit	$+76 \\ -69$
Fit: statistical	± 66
Fit: systematic	$+38 \\ -22$
Background modeling	± 7.7
Signal modeling	± 1.5
Dalitz contribution	± 0.3
Total	$+76 \\ -70$

• Observed (expected) significance above the null-signal hypothesis is $1.5\sigma (1.9\sigma)$

CERN

Higgs to yy fiducial cross section 100 σ_{fid} [fb]

FIGUEIAI CLOSS SECTION ITOM
luminosity and detector effects

 $\sigma = \frac{N_S}{\mathcal{L}_{\text{int}} \mathcal{BAC}} = \frac{\sigma_{\text{fid}}}{\mathcal{BA}} \quad \begin{array}{c} \mathcal{A} \text{ Acceptance} \\ \mathcal{B} \text{ Branching ratio} \end{array}$

 \mathcal{A} Acceptance Det. efficiencies \mathcal{C}

Component	Uncertainty [%]
Photon energy scale	< 0.1
Photon energy resolution	< 0.1
Photon identification efficiency	± 2.6
Photon isolation efficiency	± 4.0
Trigger efficiency	± 0.4
Vertex selection	< 0.1
Theoretical modeling uncertainty	± 0.8
Total	± 4.8

\sqrt{s}	Measured fiducial cross section [fb]	LHC-XS prediction [fb]
' TeV	$49 \pm 17 \text{ (stat.)} \pm 6 \text{ (syst.)} \pm 1 \text{ (lumi.)}$	24.7 ± 2.6
$3\mathrm{TeV}$	$42.5 \pm 9.8 \text{ (stat.)} ^{+2.9}_{-2.7} \text{ (syst.)} \pm 1.2 \text{ (lumi.)}$	31.0 ± 3.2
$3{ m TeV}$	$52 \pm 34 \text{ (stat.)} ^{+21}_{-13} \text{ (syst.)} \pm 3 \text{ (lumi.)}$	$66.1 \ ^{+6.8}_{-6.6}$

• Measure total from fiducial cross section

 $\sigma = \frac{\sigma_{\text{fid}}}{\mathcal{B}\mathcal{A}} \qquad \begin{array}{l} \mathcal{A} \text{ Acceptance} \\ \mathcal{B} \text{ BR}(\gamma\gamma): 0.228 \pm 0.011 \end{array}$

- 2 different PDF sets used to estimate acceptance uncertainties
 - At higher √s, more events fall out of the fiducial region (fwd events)
- Cross section upper limit at 95% CL for √s=13 TeV is 106 pb (112 pb exp)
 - Using asymptotic approximation

\sqrt{s}	Measured total cross section [pb]	LHC-XS prediction [pb]
$7\mathrm{TeV}$	$35 \pm 12 \text{ (stat.)} \pm 4 \text{ (syst.)} \pm 1 \text{ (lumi.)}$	17.5 ± 1.6
$8\mathrm{TeV}$	$30.5 \pm 7.1 \text{ (stat.)} ^{+2.6}_{-2.5} \text{ (syst.)} \pm 0.9 \text{ (lumi.)}$	22.3 ± 2.0
$13{ m TeV}$	$40 \pm 26 \text{ (stat.)} ^{+16}_{-10} \text{ (syst.)} \pm 2 \text{ (lumi.)}$	$50.9 \ ^{+4.5}_{-4.4}$

13 TeV non-BSM Higgs results from ATLAS - LHCP2016

- Data driven background normalization
 - II+µµ : semi-leptonic decays of heavy flavors (d₀ cut)
 - eµ+µµ : used to constraint the ttbar
 - 3I+x : account for mis-tagging of light jets, photon conversions or semi-leptonic hadrons (IBL)
- Particle identification changes
 - Electron: Requirement on impact parameter in transversal plane (d₀) and its error (d₀/σ_{d0})
 - Muon: Segment tag muons (ID+part MS) in |η| < 0.1

Lepton definition			
Muons: $p_{\rm T} > 6$ GeV,	$ \eta < 2.7$ Electrons: $p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$		
	Pairing		
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
	Event selection		
Lepton kinematics:	Leading lepton $p_{\rm T} > 20, 15, 10 \text{ GeV}$		
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$		
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same (opposite) flavour leptons		
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs		
Mass window:	$118 < m_{4\ell} < 129 \text{ GeV}$		

ATLAS-CONF-2015-059

Carlos Solans

Higgs to ZZ*(4l) signal extraction

- Extracted N_S from fit to m₄₁ distribution
 Expected number of events in the signal region from control region through
 - region from control region through extrapolation factors
 - Uncertainties combined linearly with SR yields

	m _{4l} > 200 GeV		m _{4l} [118-129] GeV		
Final state	Exp	Obs	Signal	Ехр	Obs
4μ	22.4 ± 2.2	20	1.67 ± 0.20	2.39 ± 0.21	1
2e2µ	17.2 ± 1.6	17	1.06 ± 0.13	1.57 ± 0.14	1
2µ2e	18.3 ± 2.6	13	0.96 ± 0.15	1.40 ± 0.16	2
4e	14.1 ± 2.1	12	0.88 ± 0.13	1.30 ± 0.14	0
Total	72 ± 8	62	4.57 ± 0.54	6.65 ± 0.58	4

ATLAS-CONF-2015-059

Carlos Solans

13 TeV non-BSM Higgs results from ATLAS - LHCP2016

N_e

- Observed (expected) significance above null-signal: 1.4σ (2.8 σ)
- Cross section upper limit of 68 pb at 95% CL for \sqrt{s} =13 TeV
 - Using asymptotic approach
- Measure the fiducial and total cross section
 - BR(ZZ→4I): (1.24±0.06)10⁻⁴

		$\sqrt{s} \left[1 \text{ev} \right]$	
	7	8	13
$\mathcal{A}~[\%]$	46.67 ± 0.23	45.98 ± 0.14	42.74 ± 0.24
\mathcal{C} [%]	51.89 ± 0.36	55.32 ± 0.24	52.71 ± 0.45

Data set [TeV]	$N_{ m s}$	$\sigma_{4\ell}^{\mathrm{fid}} \; [\mathrm{fb}]$	$\sigma_{ m theory}^{ m fid}$ [fb]	$\sigma^{\rm tot} \; [{\rm pb}]$	$\sigma_{\rm theory}^{\rm tot} \ [{\rm pb}]$
7	$4.5 \ ^{+2.8}_{-2.2}$	$1.9 \ ^{+1.2}_{-0.9}$	1.03 ± 0.11	$33 \ ^{+21}_{-16}$	17.5 ± 1.6
8	$24.0 \ ^{+6.0}_{-5.3}$	2.1 ± 0.5	1.29 ± 0.13	$37 \ ^{+9}_{-8}$	22.3 ± 2.0
13	$1.0 \ ^{+2.3}_{-1.5}$	$0.6 \ ^{+1.3}_{-0.9}$	2.74 ± 0.28	$12 \ ^{+25}_{-16}$	$50.9 \ ^{+4.5}_{-4.4}$

ERN

Combination of yy and ZZ*(4l)

σ_{pp→H} [pb]

90

70

-10

Maximized product of likelihoods

$$\mathcal{L} = \mathcal{L}_{\gamma\gamma} \times \mathcal{L}_{4\ell} \times \prod_{k} G(\sigma_k; 0, 1)$$

- Correlated: integrated luminosities, mass measurement (125.09 GeV), production modes and theoretical uncertainties (QCD scale & PDF)
- Uncorrelated: detector effects, reconstruction efficiencies
- Using asymptotic approximation
- Results at $\sqrt{s}=13$ TeV
 - Uncertainty statistically dominated
 - Compatibility of 1.3 σ over SM prediction
 - Compatibility with null-signal hypothesis is 1.4 σ observed and 3.4 σ expected
 - Combined upper limit cross section of 68 pb at 95% CL

- Search for resonant and non resonant di-Higgs production
 - Largely suppressed cross section
 - Combine large BR of bb and good γγ mass resolution
- Same selection as γγ search
 + b-jets in |η| < 2.5
 - SR: 2 tagged jets
 - CR: 0 tagged jets
- Simultaneous fit to extract background continuum constant
 - No event in signal region
- Upper limit at 95%CL for HH→bbγγ
 - 3.4 pb (obs) and 5.4 pb (exp)

Process	0-tag	2-tag
Continuum background SM single-Higgs SM di-Higgs	$\begin{array}{c} 35.8 \pm 2.1 \\ 1.8 \pm 1.5 \\ < 0.001 \end{array}$	$\begin{array}{rrr} 1.63 & \pm 0.30 \\ 0.14 & \pm 0.05 \\ 0.027 \pm 0.006 \end{array}$
Observed	27	0

Di-Higgs to bbbb channel

- Search for resonant and non resonant di-Higgs production
 - Highest sensitivity m_H > 500 GeV
- Backgrounds
 - Multi-jet events estimated in sidebands with 2 or 4 tagged jets
 - Hadronic ttbar decays \rightarrow tt-veto
- Search categories
 - 4 b-jets ΔR=0.4 (resolved)
 - 2 large-R jets ΔR=1 (boosted) with 3 or 4 b-tagged track jets
- Upper limit at 95% CL HH→bbbb from resolved analysis
 - 1.22 pb (obs) and 12.9 fb (exp)

ATLAS-CONF-2016-017 Run 1 analysis (arXiv: 1506.00285)

- Search for Higgs boson in Run 2 started with 3.2 fb⁻¹
- Increased production cross section at $\sqrt{s}=13$ TeV
- Measured Higgs cross section via $\gamma\gamma$ and ZZ channels yields an observed value $24^{+20}_{-17}(\text{stat.})^{+7}_{-3}(\text{syst.})$ pb
- Set upper limits on Higgs and di-Higgs production
- Looking forward to more data in 2016

SM fiducial cross sections

13 TeV non-BSM Higgs results from ATLAS - LHCP2016

Backup

Cross section measurements vs √s

Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

$H \rightarrow ZZ \rightarrow 2e2\mu$ candidate

 $\begin{array}{l} p_{T}(\mu) = 55 \; \text{GeV}, \, 33 \; \text{GeV} \\ p_{T}(e) = 14 \; \text{GeV}, \, 11 \; \text{GeV} \\ p_{T}(j) = 31 \; \text{GeV} \\ m_{4l} = 123 \; \text{GeV} \\ m_{\mu\mu} = 91 \; \text{GeV} \\ m_{ee} = 27 \; \text{GeV} \end{array}$

- Uncertainties acceptance correction envelope of the sum in quadrature of baseline and central values of alternative PDF sets
- Uncertainties on the acceptance correction associated with missing higher-order corrections are evaluated by varying the renormalization and factorization scales coherently and individually by factors of 0.5 and 2 from their nominal values, and by reweighting the p^H_T distribution from POWHEG BOX to the prediction of the HRES 2.2 calculation.
- The envelope of the maximum deviation of the combined scale variations and the p^H_T reweighting is used as the systematic variation to account for the uncertainty in the mass measurement, the Higgs boson mass is varied by ±0.4 GeV
- To assess the systematic uncertainty due to the assumption of SM cross-section fractions of the Higgs boson production modes, the VBF and VH fractions are varied by factors of 0.5 and 2 from the SM prediction and the fraction of ttH is varied by factors of 0 and 5.
- The total uncertainties on the acceptance correction range from 1% to 6%, depending on the channel, distribution and bin

- Event yields extrapolated from side-bands through likelihood fit
- 3-tag category increases sensitivity

Higgs to $\gamma\gamma$ + MET search

- Based on $H \rightarrow \gamma \gamma$ search
 - Heavy scalar decay into Higgs boson plus pair of DM candidates
 - Massive vector mediator emits Higgs boson and decays into a pair of DM candidates
- Extend Run 1 analysis
 - MET > 90 GeV
 - PhysRevLett.115.131801
- Follow H→γγ selection and split into four categories
 - Updated particle definitions
- No excess over backgrounds
 - SM H → γγ, γγ continuum, γ+jet, di-jet, W+γ and W+γγ

Category	$\mid E_{\rm T}^{\rm miss} \; [{\rm GeV}]$	$p_{\rm T}^{\rm hard} ~[{\rm GeV}]$	$p_{\rm T}^{\gamma\gamma}$ [GeV]
High $E_{\rm T}^{\rm miss}$, high $p_{\rm T}^{\gamma\gamma}$	> 100	-	> 100
High $E_{\rm T}^{\rm miss}$, low $p_{\rm T}^{\gamma\gamma}$	> 100	-	≤ 100
Intermediate $E_{\rm T}^{\rm miss}$	$> 50 \text{ and } \le 100$	> 40	-
Rest	-	-	> 15

CERN

Limits on Higgs to $\gamma\gamma$ + MET search

- Limits below expectation
- Heavy scalar production model
 - Upper limit 29.6 fb (m_H=270 GeV)
- Massive mediator model
 - Upper limit 5.3 fb (m_{DM}=1 GeV)

- Low and high MET categories are considered
- No significant excess is found, set upper limit at 95% CL on cross section in two models
 - Simplified dark matter model with heavy mediators
 - Heavy narrow width scalar boson decaying to four leptons

Higgs to bb + MET search

- Two models
 - Vector mediator radiates Higgs and decays to DM candidates
 - Associated production with CP-odd pseudo-scalar A decaying to DM
- Event selection
 - MET > 150 GeV and p_T^{miss} > 30 GeV
 - No isolated muons or electrons
- Backgrounds reduced by angular cuts and modeled in control regions
 - SM W/Z+jets and ttbar
 - Miss-tagged multi-jet and low MET
 - Back-to-back di-jet events
- Four categories
 - 3 x resolved by MET (150-200,200-350,350-500) GeV
 - 1 x merged MET>500 GeV
- No significant excess observed

- Exclusion limits at 95 % CL for a wide range of Z' masses
 - Pseudo-scalar up to to 500 GeV
 - Vector mediator up to 900 GeV

Heavy Higgs to ZZ*(llqq) search

- Heavy resonances [300, 1000] GeV to ZZ
 - Z leptonic (ee, μμ) + Z hadronic: merged (J) ΔR=1 or resolved (jj) (tagged or untagged) ΔR=0.4 jets
- Tight particle identification for Run 2
 - Main backgrounds WZ/ZZ (from MC) Z+jets and tt (constrained from CR)
 - Fit to m_{IIJ} and m_{IIJ} in SR and CR of merged and resolved simultaneously
- Interpreted in 2HDM spin 0 CP-even Higgs or EWS spin 2 graviton models

1200

CP-odd Higgs to Zh search

- CP-odd pseudo-scalar Higgs (m_A in [220, 2000] GeV) decay to Z and light Higgs (m_H=125 GeV)
 - Z leptonic modes (ee, µµ, vv)
 - H to b-quarks (bb)
- Event categories
 - Number of leptons: 0, 2
 - P_T of Z candidate: <500, >500 GeV
 - Tagged b-jets: 1 or 2
- Interpreted in context of 2HDM types I and II

Charged Higgs to tv search

- Search for charged Higgs in assoc. with top quarks decaying to TV
 - No high p_T electron or muon
 - Extending Run 1 searches
- Backgrounds
 - W+jets, Z/γ+jets, WW,WZ,ZZ, multi-jet
- Event selections
 - Anti-k_T Jets, ΔR=0.4, JVT, |η|<2.4
 - Tau p_T>40GeV, ΔR=0.2, BDT, |η|<2.3
 - MET > 70 GeV
 - mT > 50 GeV

$$m_T = \sqrt{2p_T^\tau E_T^{\text{miss}} (1 - \cos\delta\phi_{\tau,\text{miss}})}$$

- No significant excess observed
- Upper limits at 95% CL set on $\sigma(pp \rightarrow [b]tH^+) \times BR(H^+ \rightarrow \tau v)$

arXiv 1603.09203

400 600 800 1000 1200 1400 1600 1800 2000

200

m_{မ⁺} [GeV]