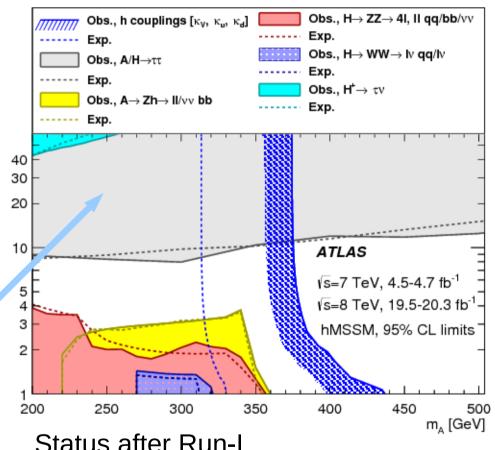


ATLAS High-mass MSSM H/A → tt search at 13 TeV

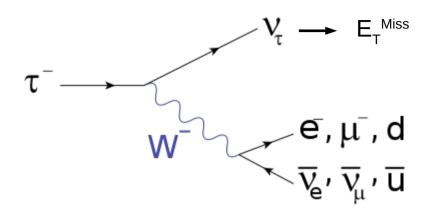
LHCP 2016
Mark Pickering
(University of Oxford)
on behalf of the
ATLAS collaboration



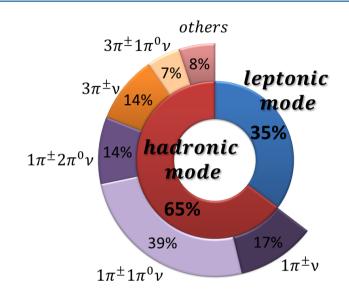
14 June 2016 1

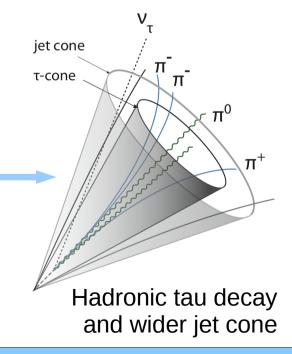
Motivation

- MSSM Higgs sector:
 - two Higgs doublets five Higgs Bosons
 - Two charged "H^{+/-}", one neutral CP-odd "A", two neutral CP-even. 5 "h" (SM-like) and "H"
 - Described by m_Δ and tanβ (vev ratio of doublet) at tree level
- Search focuses on the neutral H/A decaying to a pair of τ -leptons
- Channel sensitive to high tanß region
 - $tan\beta > 40$ for $m_{\lambda} \sim 1$ TeV



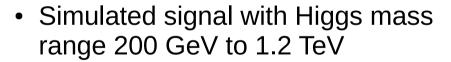
Status after Run-I

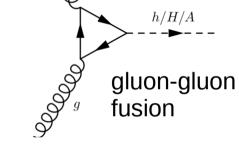

 $H/A \rightarrow \tau\tau$ analysis sensitive to unique area of parameter space (grey)



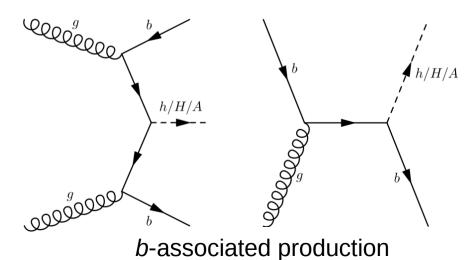
Tau Particles In ATLAS

- Decay hadronically or leptonically
- Jets form a major background
- Boosted decision tree used to identify τ_{had} and reject jets
- Discriminating variables include narrowness of tau jet, tau decay length, and number of charged tracks (1 or 3)
- Missing transverse energy associated with decay, unable to fully reconstruct parent particle mass




Analysis Overview

- Analysis split by di-tau decay
 - Fully-hadronic (Had-had) and lepton+hadron (Lep-had) decay
- Search for excess of events over SM prediction
 - Successful background modelling key!
- Use a likelihood function binned in m_T^{tot} : mass discriminant (Lorenz invariant vector sum in transverse plane)


$$m_{T}^{tot} = \sqrt{m_{T}^{2} \left(\tau_{1}, \tau_{2}\right) + m_{T}^{2} \left(\tau_{1}, E_{T}^{Miss}\right) + m_{T}^{2} \left(\tau_{2}, E_{T}^{Miss}\right)}$$

- Gluon-gluon fusion and b-associated production mechanisms considered
- b-associated production increasingly important for high tanβ
- Interpret results in m_A-tanβ space

Example lowest order production mechanisms

Had-had – Signal Region

Signal region events as a function of the total transverse mass, 500 GeV signal in purple

Signal Region selection

Trigger: one τ_{had} $p_{T} > 125$ GeV

Veto events with e/μ $p_{T}^{lead-\tau} > 135$ GeV, $p_{T}^{sublead-\tau} > 55$ GeV

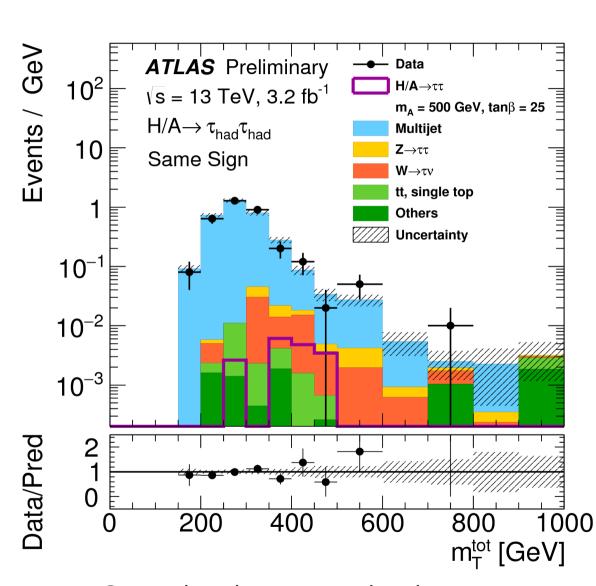
Taus pass BDT identification $\Delta \phi$ (lead- τ , sublead- τ) > 2.7

Taus opposite charge

Control Region:

Same sign charge taus

- Dominant backgrounds
 - Jet → τ_{had} fakes from multijet
 processes (blue) data-driven
 - Z → $\tau\tau$ (yellow) simulation
 - Non-multijet jet → τ_{had} fake sources e.g. W+jet, top (red/green) – simulation with data driven correction



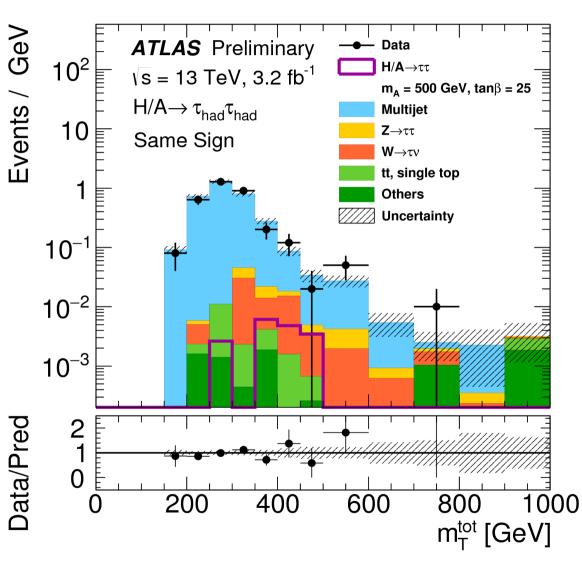
Had-had – Multijet Background

- Inadequate modelling of jet $\rightarrow \tau_{had}$ fakes in simulation
- Data driven multijet background (blue) estimate via "tag and probe" method in multi-jet enriched CR
 - "Tag" a jet jet trigger
 - "probe τ " (a jet) similar to SR τ
- Calculate "fake factor" (FF), ratio of pass/fail τ-ID on "probe τ"

$$FF(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \left. \frac{N^{\mathrm{pass} \; \tau - \mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail} \; \tau - \mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})} \right|_{\mathrm{multijet}}$$

 Apply FF to data events failing sublead τ-ID requirement for multijet contribution

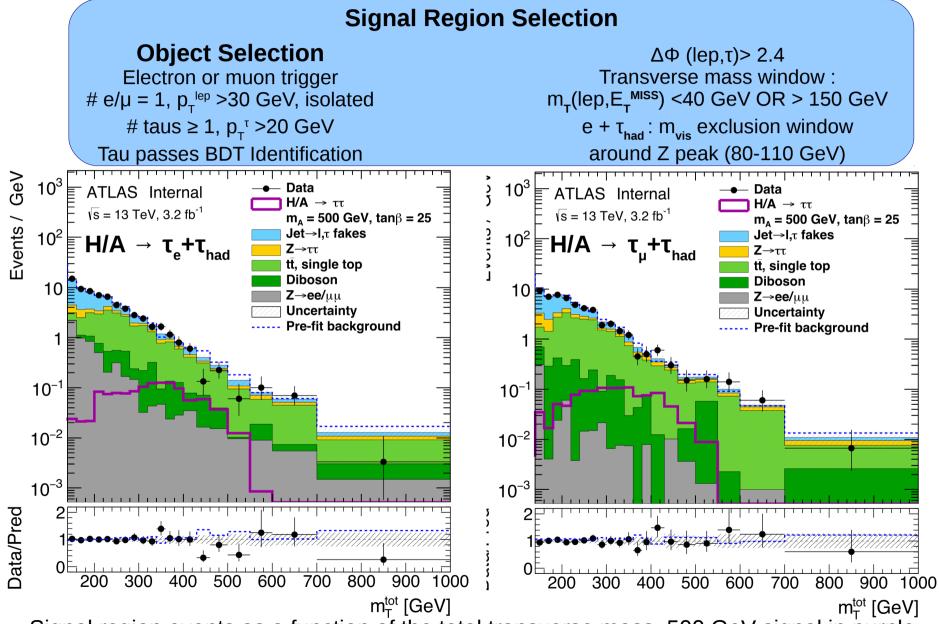
Same sign charge control region events as a function of the total transverse mass



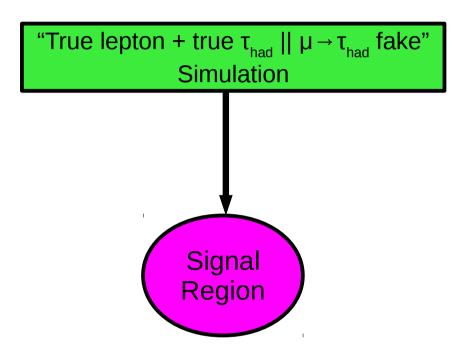
Had-had – Non-multijet Background Jet → τ Fakes

- Inadequate modelling of jet $\rightarrow \tau_{had}$ fakes in simulation
- Data driven correction to simulation for non-multijet backgrounds via "tag and probe" method in W(→μν)+jets dominated CR
 - "Tag" a muon muon trigger
 - "probe τ" (a jet) similar to SR τ
- Calculate "Fake rate" (FR), % jets passing τ-ID on "probe τ"

$$FR(p_{\rm T}, N_{\rm track}) \equiv \left. \frac{N^{\rm pass \; \tau-ID}(p_{\rm T}, N_{\rm track})}{N^{\rm all \; \tau-ID}(p_{\rm T}, N_{\rm track})} \right|_{{\rm W}(\to \mu\nu) + {\rm jets}}$$


 Apply fake-rate in place of BDT ID to non-truth matched taus (largest source W+jets – red/dark green)

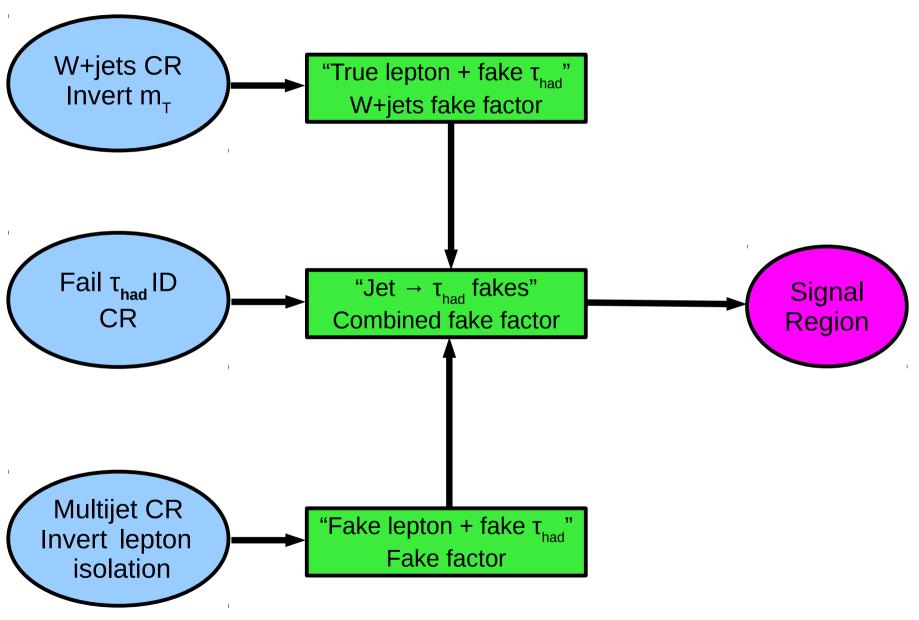
Same sign charge control region events as a function of the total transverse mass


Lep-had – Signal Region

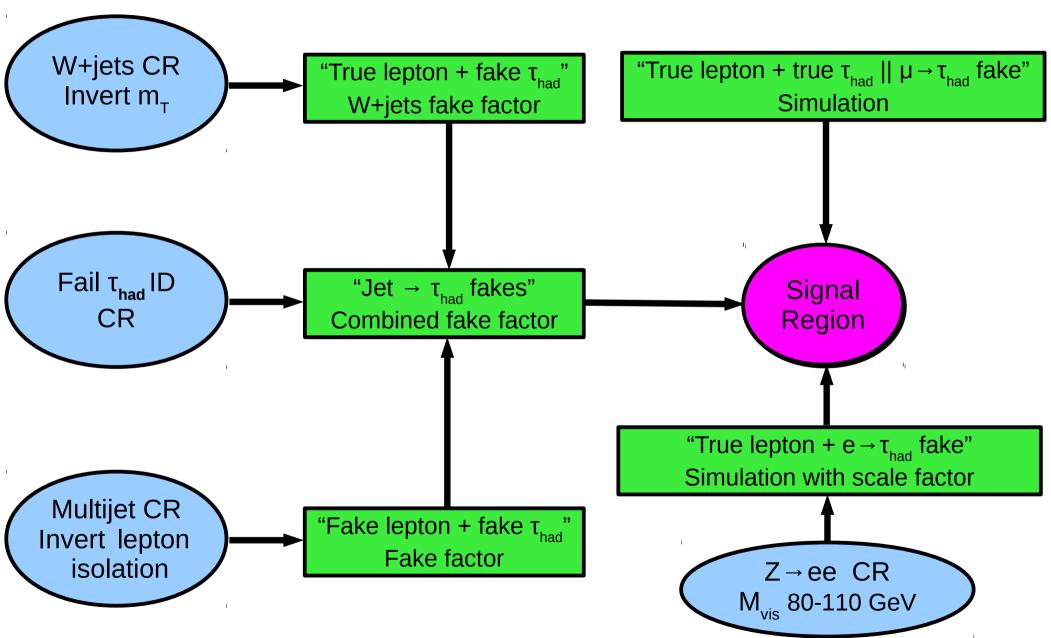
Signal region events as a function of the total transverse mass, 500 GeV signal in purple



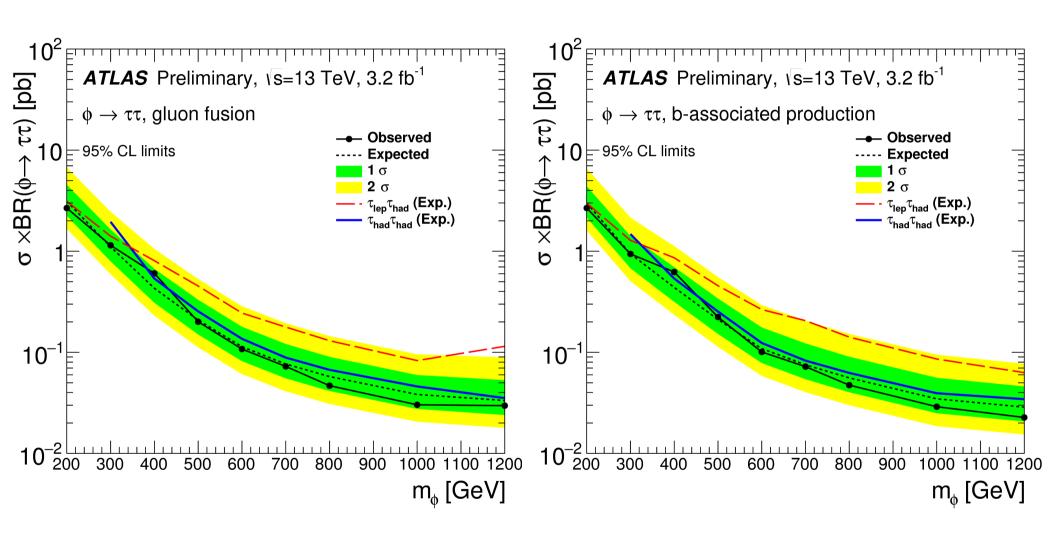
Lep-had – Background Overview



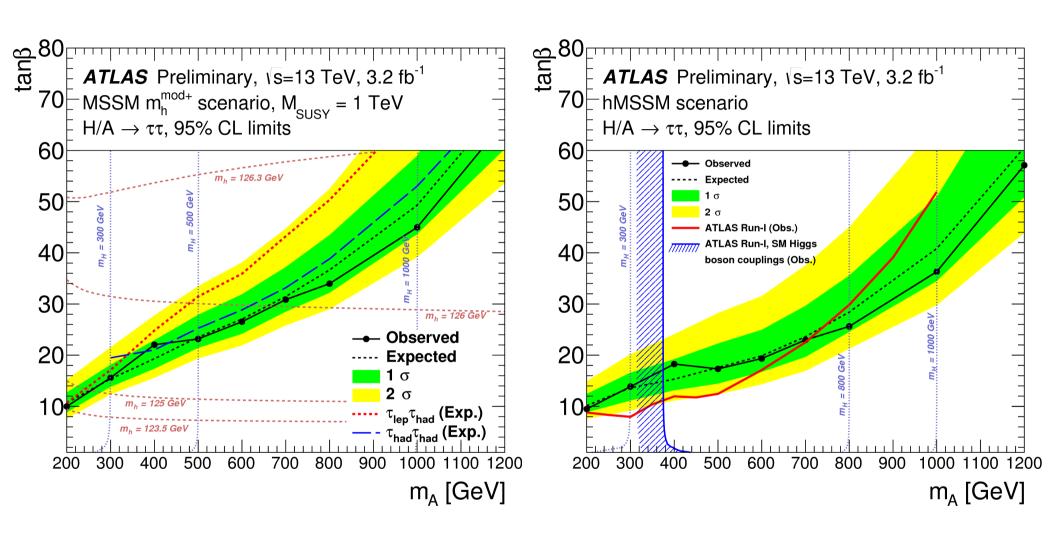
Lep-had - Background Overview


Lep-had - Background Overview

Mark Pickering 11 14 June 2016

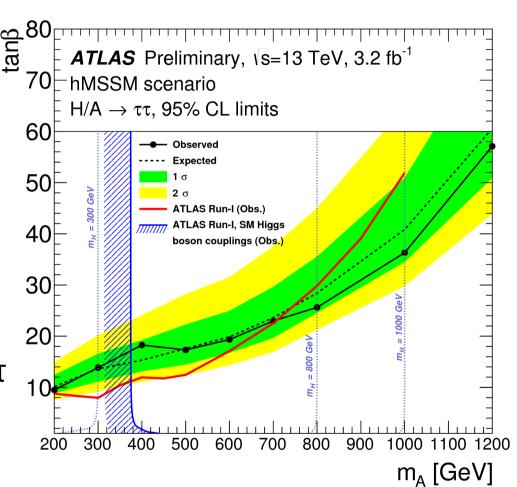

Lep-had - Background Overview

Mark Pickering 12 14 June 2016


Limit on cross-section x BR

 Had-had (blue) drives sensitivity at high mass Lep-had (red) more important at low mass

Limit on cross-section x BR



Run-1 limit shown in red (right)
 Improvement above 700 GeV – mass reach extended to 1.2 TeV

Summary

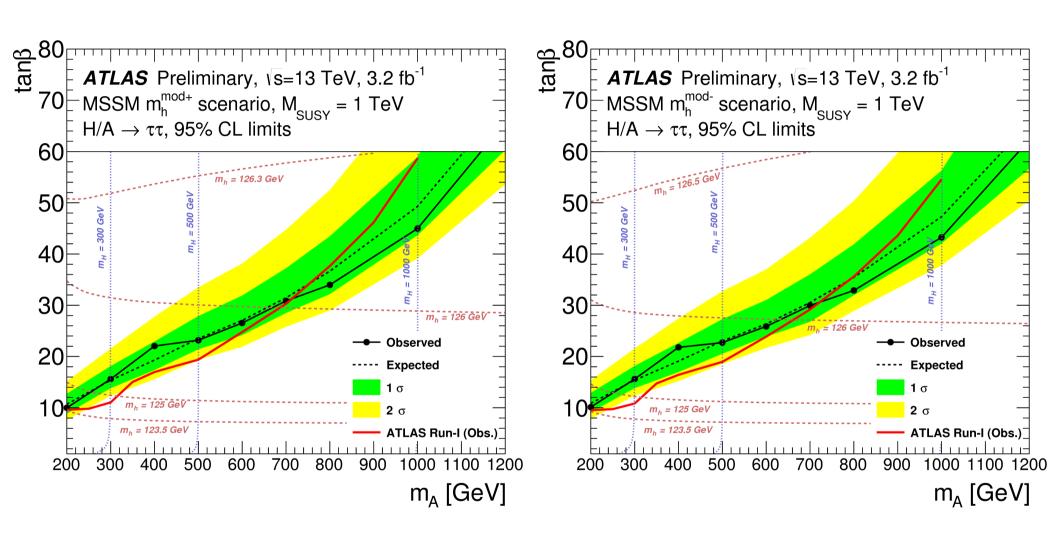
- No significant excesses found
 - Exclusion limits placed on cross-section x BR and tanβ-m, plane
 - ATLAS-CONF-2015-061
- Improved sensitivity compared to Run-1 above mA = 700 GeV
- 2016 an exciting year for H/A → ττ
 - Large improvement in sensitivity expected
 - Watch this space!

Backup

14 June 2016

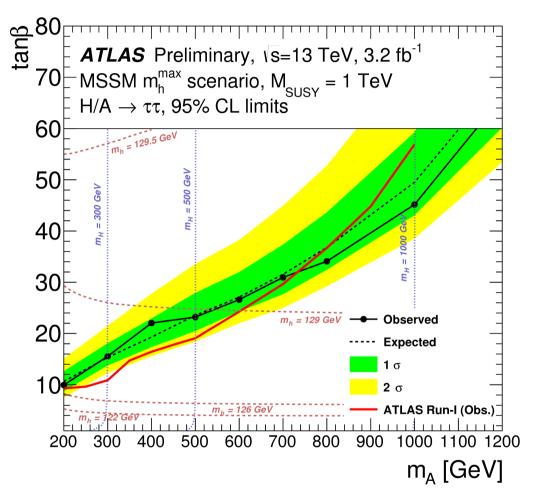
Systematics Overview

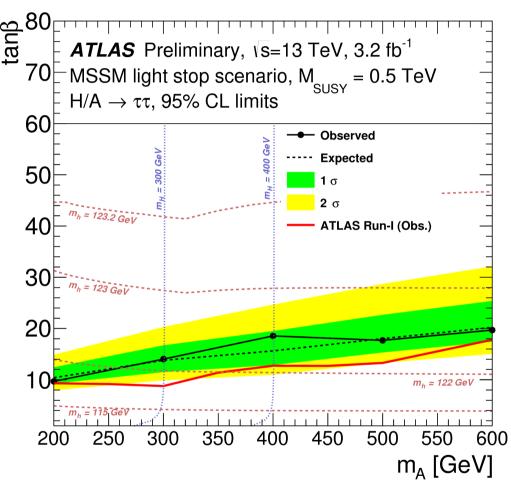
$Had-had - \tau_{had} \tau_{had}$


- Multijet FF: statistics in dijet CR + uncertainty from OS/SS difference → 7%
- MC backgrounds with mis-ID τ_{had} : FR uncertainty given by statistics in $W(\rightarrow \mu \nu)$ +jets CR \rightarrow 9% for W($\rightarrow \tau \nu$)+jets
- MC-estimated samples detector-related syst:
 - trigger SF: <30%, low stats in SF measurement
 - τ-ID, e-veto, tau reconstruction, tau energy scale, high-p, systematics also significant (up to 15%)

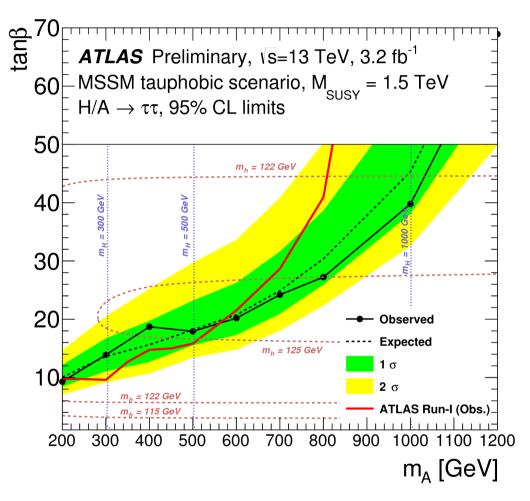
$Lep\text{-had} - \tau_{lep}\tau_{had}$

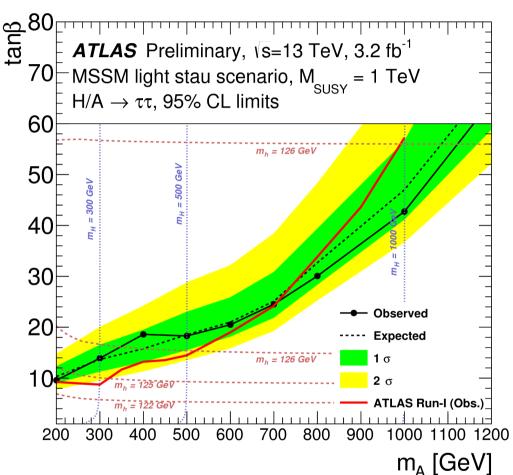
- **Multijet FF**: Stats in CRs dominate effect. True Lepton contamination in CR also contributes
- W+iets FF: q/q fraction between SR-CR source of syst. Also CR contamination from multijet. Total → 4-8% 1P. 5-30% 3P
- MC-estimated samples detector-related syst:
 - Tau-ID, reco, e-veto, tau energy **scale** significant impact on $Z \rightarrow \tau \tau$, top, signal (~10%) high p, tau systematic also significant
 - e/µ: trigger, reco, isolation, identification, energy scale (2-5%)
 - **JES/JER** <4%, **MET** syst < 4%


Mark Pickering 17



14 June 2016 18





14 June 2016 19

14 June 2016 ²⁰

$m_A [{\rm GeV}]$	observed	expected	$+2\sigma$	$+1\sigma$	-1σ	-2σ
			[pb]			
200	10	11	15	13	9.1	7.9
300	16	15	22	18	13	12
400	22	19	28	23	17	15
500	23	23	33	28	21	19
600	27	27	38	32	24	22
700	31	31	45	37	28	25
800	34	37	52	43	33	29
1000	45	49	> 60	59	43	39
1200	> 60	> 60	> 60	> 60	60	53

14 June 2016 21

Final number of events

Table 1: Observed number of events and background predictions after the full selections for the $\tau_e \tau_{had}$, $\tau_{\mu} \tau_{had}$ and $\tau_{had} \tau_{had}$ channels. The combined statistical and systematic uncertainties are quoted.

$\tau_e \tau_{\rm had}$ Channel	Yield
$Z \rightarrow \tau \tau + \text{jets}$	5650 ± 750
Fake τ_{had}	9640 ± 490
$Z \rightarrow \ell\ell$ +jets	1390 ± 830
Top	543 ± 86
Diboson	102 ± 22
Total prediction	17300 ± 1300
Data	17480
$\tau_{\mu}\tau_{\rm had}$ Channel	Yield
$Z \rightarrow \tau \tau + \text{jets}$	6720 ± 980
Fake τ_{had}	5840 ± 420
$Z \rightarrow \ell\ell$ +jets	710 ± 92
Top	552 ± 80
Diboson	105 ± 22
Total prediction	14000 ± 1100
Data	13374
τ _{had} τ _{had} Channel	Yield
$Z \rightarrow \tau \tau + \text{jets}$	52 ± 18
Multijet	175 ± 13
$W \rightarrow \tau \nu + \text{jets}$	23.7 ± 9.6
Top	11.6 ± 5.0
Others	4.5 ± 2.4
Total prediction	268 ± 25
Data	284

14 June 2016 22

MC samples

 $Had-had - \tau_{had} \tau_{had}$

 $Lep\text{-had} - \tau_{lep}\tau_{had}$

Signal samples

gluon-gluon fusion Powheg+Pythia8

bbH aMC@NLO+Pythia8 (AtlFast-II)

300 - 1200 GeV mass points

Background

Z+jets + $Z \rightarrow \tau\tau$ – Powheg+Pythia8 in boson mass slices

ttbar + top - Powheg+Pythia6

Diboson samples – Sherpa

W+jets samples - Sherpa

- Lead tau p_⊤ slices
- Various corrective factor for mismodelling requried

W+jets samples – Powheg+Pythia8

Had-had – Signal Region

Signal Region selection

recommended GRL applied overlap removal order $\mu>e>\tau>jet$

Taus:

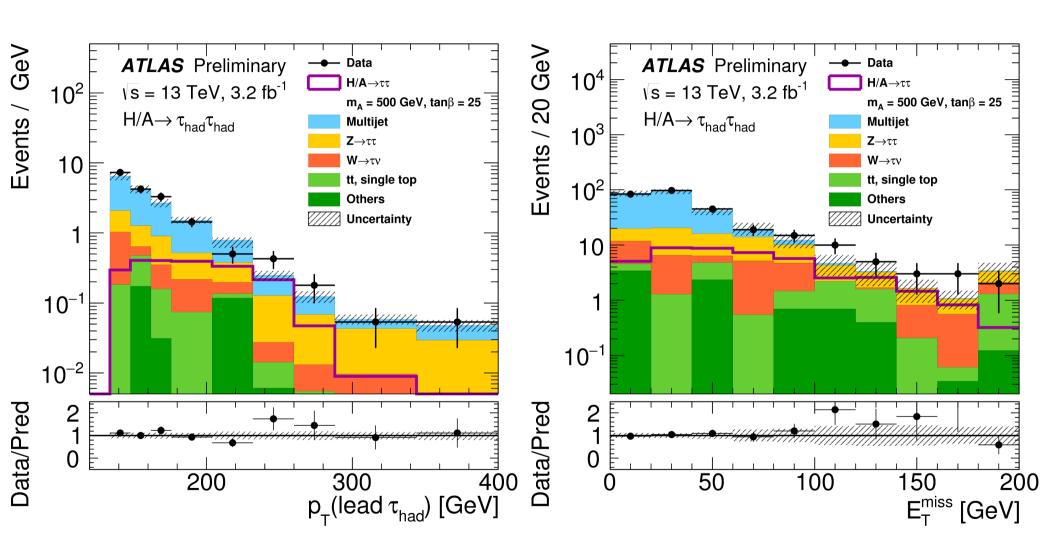
taus \geq 2, 1 or 3 tracks, opposite (±1) charge $\eta < 2.5$ (not crack region) $p_T^{lead-\tau} > 135 \text{ GeV}$ $p_T^{sublead-\tau} > 55 \text{ GeV}$ $\Delta\Phi_{tau_0, tau_1} > 2.7$

trigger: HLT_tau125_medium1_tracktwo matched to leading tau

leading tau medium isolation*

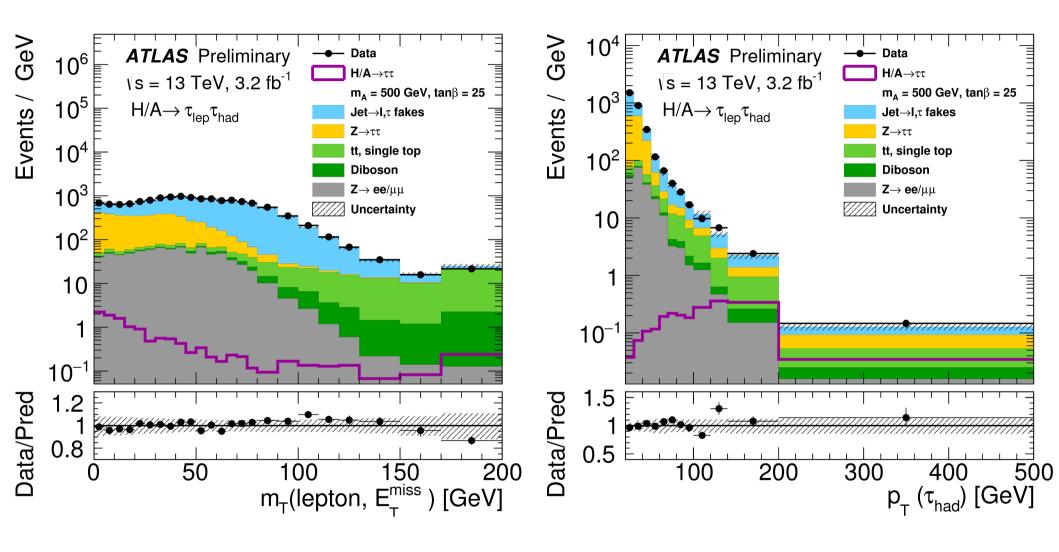
subleading pass loose isolation*

Control Region:

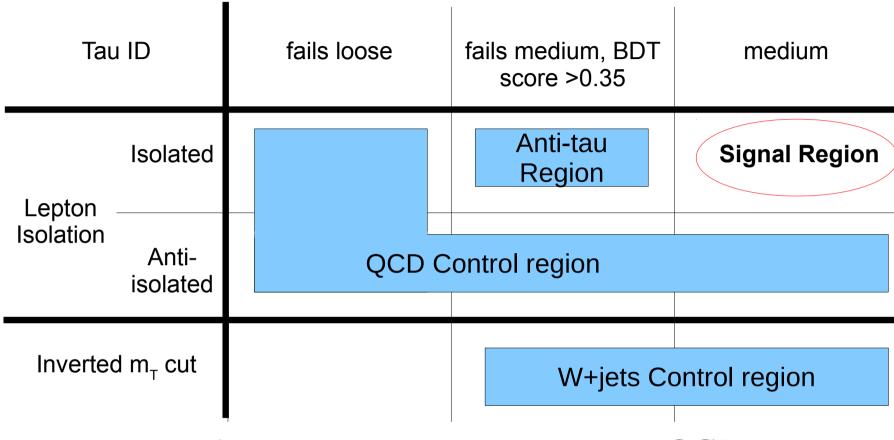

same charge taus

*Isolation Definition

if data or truth-matched tau MC: apply loose/medium τ-ID and ID SF(MC only) non-truth matched tau MC: apply fake rate

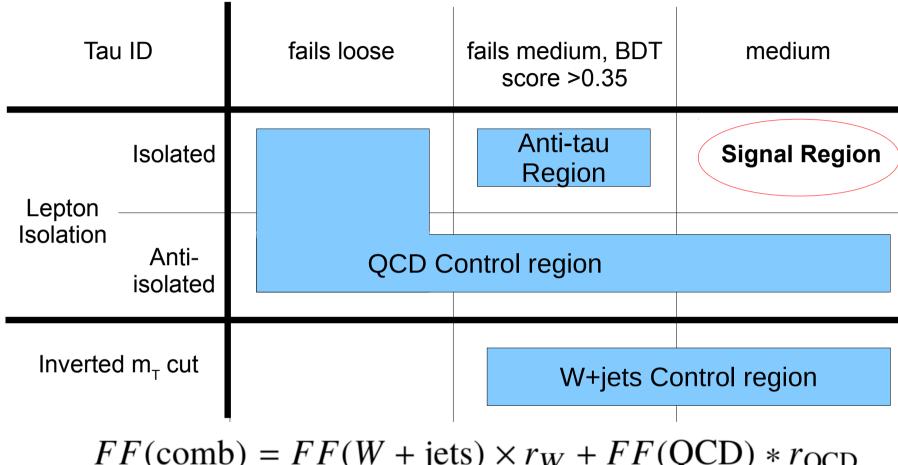

Had-had - Signal Region

Mark Pickering 25 14 June 2016



Lep-had – Signal Region

Combination
$$e + \tau_{had} \& \mu + \tau_{had}$$



$$FF(\text{comb}) = FF(W + \text{jets}) \times r_W + FF(\text{QCD}) * r_{\text{QCD}}$$

Aim: Using the known number of events in the QCD and W+jets control regions, extract the proportion of jets faking taus in the signal region from the Anti-tau region

Mark Pickering 27

 $FF(\text{comb}) = FF(W + \text{jets}) \times r_W + FF(\text{QCD}) * r_{\text{OCD}}$

- 1) Get the ratio jets faking taus in W+jets CR region FF(W+jets)
- 2) Get the ratio jets faking taus in QCD CR region FF(QCD)
- 3) Get the proportion of QCD jets faking taus in the anti-tau region $r_{\rm QCD}$

Mark Pickering 28 14 June 2016

Tau ID		fails loose	fails medium, BDT score >0.35	medium
Lepton	Isolated			Signal Region
Isolation	Anti- isolated			
Inverted m _⊤ cut			FF _{W+jets} denominator	FF _{W+jets} numerator
$FF(comb) = FF(W + iets) \times +$				

$$FF(\text{comb}) = FF(W + \text{jets}) \times +$$

Factor of jets in W+jets faking taus

$$FF(W + \text{jets}) = \frac{N(\text{pass "medium" tau ID})}{N(\text{fail "medium" tau ID})},$$

Mark Pickering 29 14 June 2016

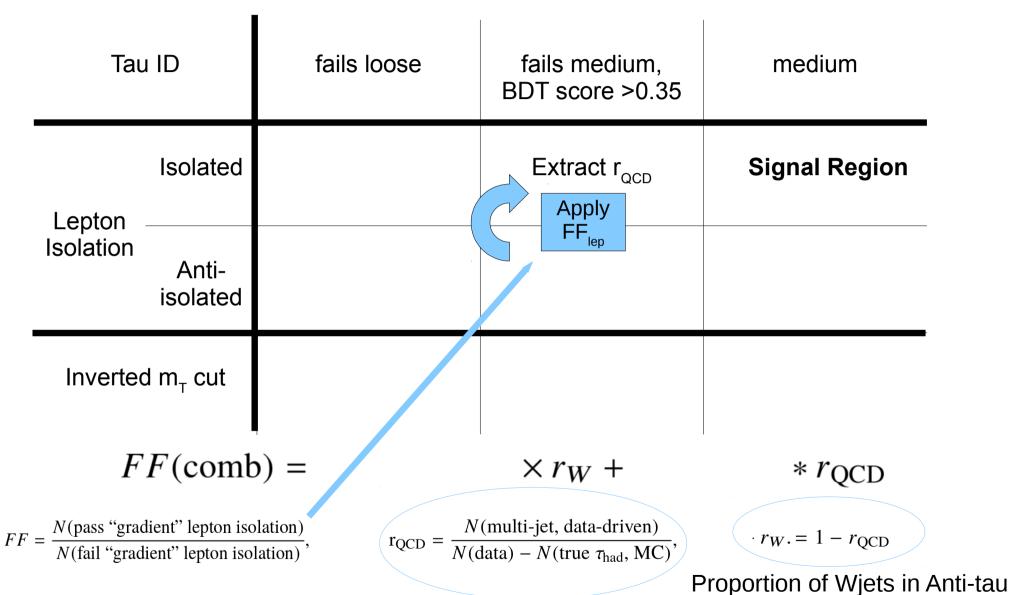
Tau ID		fails loose	fails medium, BDT score >0.35	medium
Lepton	Isolated			Signal Region
Isolation	Anti- isolated		FF _{QCD} denominator	FF _{QCD} numerator
Inverted	d m _⊤ cut			
		•		0 00 0

$$FF(comb) =$$

$$+FF(QCD) *$$

Factor of QCD faking taus

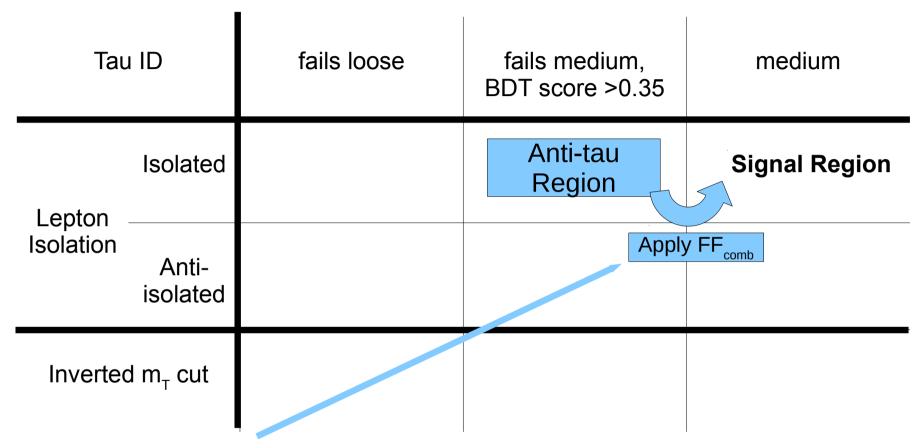
$$FF(\text{QCD}) = \frac{N(\text{pass "medium" } \tau \text{ identification})}{N(\text{fail "medium" } \tau \text{ identification and jet BDT > 0.35})},$$


Tau ID		fails loose	fails medium, BDT score >0.35	medium
Lepton	Isolated	FF _{lep} numerator		Signal Region
Isolation	Anti- isolated	FF _{lep} denominator		
Inverted m _⊤ cut		7		

$$FF(comb) =$$

 $FF = \frac{N(\text{pass "gradient" lepton isolation})}{N(\text{fail "gradient" lepton isolation})},$

Factor of QCD faking leptons



Factor of QCD faking leptons

Proportion of QCD in Anti-tau region

$$FF(\text{comb}) = FF(W + \text{jets}) \times r_W + FF(\text{QCD}) * r_{\text{QCD}}$$

$$FF = \frac{N(\text{pass "gradient" lepton isolation})}{N(\text{fail "gradient" lepton isolation})}, \qquad r_{\text{QCD}} = \frac{N(\text{multi-jet, data-driven})}{N(\text{data}) - N(\text{true } \tau_{\text{had}}, \text{MC})}, \qquad r_{W} = 1 - r_{\text{QCD}}$$

$$FF(\text{QCD}) = \frac{N(\text{pass "medium" } \tau \text{ identification})}{N(\text{fail "medium" } \tau \text{ identification and jet BDT} > 0.35)}, \qquad FF(W + \text{jets}) = \frac{N(\text{pass "medium" tau ID})}{N(\text{fail "medium" tau ID})},$$

Tau ID		fails loose	fails medium, BDT score >0.35	Medium
Lepton _ Isolation	Isolated	FF _{lep} numerator	Extract r _{QCD} Apply FF _{lep} Apply Apply denominator	Signal Region
	Anti- isolated	FF _{lep} denominator		FF _{QCD} numerator
Inverted m _⊤ cut			FF _{W+jets} denominator	FF _{W+jets} numerator

$$FF(\text{comb}) = FF(W + \text{jets}) \times r_W + FF(\text{QCD}) * r_{\text{QCD}}$$

$$r_{\text{QCD}} = \frac{N(\text{multi-jet, data-driven})}{N(\text{data}) - N(\text{true } \tau_{\text{had}}, \text{MC})}, \qquad FF(\text{QCD}) = \frac{N(\text{pass "medium" } \tau \text{ identification})}{N(\text{fail "medium" } \tau \text{ identification and jet BDT} > 0.35)}, \\ FF(W + \text{jets}) = \frac{N(\text{pass "medium" tau ID})}{N(\text{fail "medium" tau ID})}, \qquad FF = \frac{N(\text{pass "gradient" lepton isolation})}{N(\text{fail "gradient" lepton isolation})}, \qquad r_{\text{QCD}} = 1 - r_W$$

Mark Pickering 14 June 2016 34

Mass Reconstruction - Algorithms

- Various mass reconstruction algorithms considered tuned to high mass
- Missing Mass Calculator (MMC)
 - Assume missing transverse momentum is due entirely to the neutrinos
 - Scan over the angles between the neutrinos and the visible τ decay products
 - Each solution is weighted according to probability density functions that are derived from simulated τ decays
 - MAXW solution of maximum weight point of phase space
 - MLM highest probability mass in calculation
 - MLN3P point with most likely neutrino decay
- The Matrix-element Oriented SAmpling Calculator (MOSAIC)
 - similar technique to the MMC in using likelihood function and probability density function
 - uses a matrix element based maximum likelihood.
- Total Transverse Mass M_{TOT}
 - Used in Run-I
- M_{TOT} considered to be the optimal mass reconstruction technique for maximising signal-background separation

$$m_{T}^{tot} = \sqrt{m_{T}^{2}(\tau_{1}, \tau_{2}) + m_{T}^{2}(\tau_{1}, E_{T}^{Miss}) + m_{T}^{2}(\tau_{2}, E_{T}^{Miss})}$$

$$m_{T} = \sqrt{2p_{T1}p_{T2}(1 - \cos \Delta \phi)}$$

Derivations and Analysis Frameworks

- Running on HIGG4D4* derivations:
 - 1 || 3 track tau candidates with:
 - $\begin{array}{l} \quad p_{T}^{\;\; lead \; -\tau} > 160 \; GeV \; \&\& \; p_{T}^{\;\; sublead \; -\tau} > 45 \; GeV \; OR \\ \\ p_{T}^{\;\; lead \; -\tau} > 80 \; GeV \; \&\& \; p_{T}^{\;\; sublead \; -\tau} > 50 \; GeV \; \&\& \; jet \; tau \; looseID^{sublead \; -\tau} \\ \end{array}$
 - Significant reduction in time to produce ntuples
- Two xAOD based Frameworks:
 - "xTAU" Framework and Dresden based "ELCore" framework
 - xTAU produces ntuples from xAODs
 - ELCORE runs directly on derivations
- Plotting codes for ntuples vary between analysers
 - Cross checks and acceptance challenges in place
 - * For EOYE QCD estimation in di-jet control region we use the looser SUSY11
 - Requires firing of single jet triggers no tau ID requirement
 - * For jet → tau fake rate calculation use HIGG4D2 derivations
 - Medium quality lepton ($p_T^e > 15$ GeV || $p_T^{\mu} > 12$ GeV) + hadronic tau $p_T^{\tau} > 18$ (1 || 3 track)

Local ntuple analysis