Single top production and properties at hadron colliders

Kirill Skovpen (IPHC Strasbourg)

on behalf of ATLAS, CDF, CMS and D0 Collaborations

LHCP2016

Why study single top?

- Direct probe of electroweak interactions (in contrary to ttbar production which is of strong type)
- Wtb vertex is involved in all SM single top production mechanism → determination of CKM matrix element |V_{tb}| from the measured cross sections

- Probe the PDFs
- Test anomalous Wtb couplings in the production rates of top and antitop quarks
- Search for **FCNC** interactions

More details on single top related results could be found in the talks already given by **Mohsen Naseri**, **Fabian-Phillipp Tepel**, **Matthias Komm** and **Peter Uwer**

Single top production

Light jet in forward direction

Two b jets within the central region

- ▶ Predicted cross sections depend on PDF, 4FS/5FS, scale choice, top quark mass, etc.
- Common efforts within <u>LHCtopWG</u> and *Tevatron Top WG* to harmonize the comparison to theoretical predictions with Hathor v2.1 (NLO), will proceed at NNLO: Phys. Lett. B 736, 58-63 (2014)
- Calculations for Wt are available at NLO+NNLL

Single top at Tevatron

- Final single top combination for t and s+t channels from Tevatron
- Does not include already reported **s channel** results ²
- ▶ Statistically independent combination of I+jets (CDF and D0) and E_T^{miss}+jets (CDF) final states
- Combined MVA based t and s channel discriminants
- Measured cross sections and |Vtb| are consistent with SM predictions

[1] T. Aaltonen et al., CDF Collaboration, D0 Collaboration, Phys. Rev. Lett. 115, 152003 (2015)

[2] T. Aaltonen et al., CDF Collaboration, D0 Collaboration, Phys. Rev. Lett. 112, 231803 (2014)

Summary on single top at Tevatron

[this Letter] Phys. Rev. Lett. 115, 152003 (2015) [21] Phys. Rev. D 93, 032011 (2016) [22] Phys. Lett. B 726, 656 (2013) [25] Phys. Rev. Lett. 112, 231805 (2014) [26] Phys. Rev. Lett. 112, 231803 (2014)

t channel at CMS

- Measurement with full 2015 data (2.3 fb⁻¹) following the first t channel measurement at 13 TeV (42 pb⁻¹) at CMS
- Measured in muon+jets channel
- Event categorization according to the number of jets and b tagged jets
- Signal extracted through binned likelihood fit to a Neural Net discriminant

$$|f_{LV}V_{tb}| = 1.02 \pm 0.07 (exp.) \pm 0.02 (theo.)$$

7%

[1] <u>CMS-PAS-TOP-16-003</u> [2] <u>CMS-PAS-TOP-15-004</u>

$$\sigma_{t ext{-ch.}} = 227.8 \pm 9.1 \, (ext{stat.}) \pm 14.0 \, (ext{exp.}) \, {}^{+28.7}_{-27.7} \, (ext{theo.}) \pm 6.2 \, (ext{lumi.}) \, ext{pb} = 227.8 \, {}^{+33.7}_{-33.0} \, ext{pb}$$

15%

t channel at ATLAS

13 TeV

- First separate top-quark and top-antiquark t channel measurement at 13 TeV
- Measurement is done in muon+jets channel
- Event categorization according to the number of jets and b tagged jets
- Signal extracted through a binned likelihood fit to a Neural Net discriminant

$$\sigma(tq) = 133 \pm 6 \text{ (stat.)} \pm 24 \text{ (syst.)} \pm 7 \text{ (lumi.) pb}$$

$$\sigma(\bar{t}q) = 96 \pm 5 \text{ (stat.)} \pm 23 \text{ (syst.)} \pm 5 \text{ (lumi.) pb}$$

$$\sigma(tq + \bar{t}q) = 229 \pm 48 \text{ pb}$$
 21%

$$|f_{LV} \cdot V_{tb}| = 1.03 \pm 0.02 \text{ (stat.)} \pm 0.11 \text{ (syst.)} \pm 0.02 \text{ (theor.)} \pm 0.03 \text{ (lumi.)}$$

= 1.03 ± 0.11.

[1] ATLAS-CONF-2015-079 $|V_{tb}| > 0.75 @95\% CL (f_{LV} = I, V_L = V_{tb})$

- First t channel differential cross section measurement at 13 TeV
- Analysis is done in muon+jets events
- Signal is extracted with binned maximum likelihood fit to **BDT** discriminator ($m_T(W) > 50$ GeV) and to $m_T(W)$ in the signal and background control regions
- ▶ Unfolded cross section is measured as a function of the top quark p_T and rapidity

s channel at ATLAS

- **Evidence** for **s channel** at 8 TeV
- Previous ATLAS result based on the same dataset using **BDT** gave 1.3σ observed significance ²
- Analysis in **lepton+jets** channels
- Matrix element (ME) method to define discriminant (contributes up to ≈50% improvement with respect to BDT analysis)
- Another ≈50% of improvement comes from the latest calibrations, optimized event selection and simulated samples
- Signal extracted from simultaneous binned maximumlikelihood fit to ME discriminant and lepton charge in signal and control regions

Observed significance is 3.2σ (3.9σ expected)

$$|V_{tb}| > 0.5 @95\% CL$$

 $(f_{LV} = I, V_L = V_{tb})$

[1] ATLAS Collaboration, Phys. Lett. B (2016) 228-246 [2] ATLAS Collaboration, Phys. Lett. B740 (2015) 118

$$|V_{tb}| > 0.5 @95\% CL$$

($f_{LV} = I, V_L = V_{tb}$)

$$\sigma_s = 4.8 \pm 0.8 \text{(stat.)}_{-1.3}^{+1.6} \text{(syst.) pb}$$

35%

s channel at CMS

- Combined fit of 7 TeV (muon channel) and 8 TeV (electron and muon channels) data results
- Categorization of events by the number of b tagged jets
- Signal extracted through a binned maximum-likelihood fit to a signal vs background BDT discriminant

$$\sigma_s=7.1\pm8.1 \, ({
m stat+syst}) \, {
m pb}, \quad {
m muon channel, 7\, TeV};$$
 $\sigma_s=11.7\pm7.5 \, ({
m stat+syst}) \, {
m pb}, \quad {
m muon channel, 8\, TeV};$
 $\sigma_s=16.8\pm9.1 \, ({
m stat+syst}) \, {
m pb}, \quad {
m electron channel, 8\, TeV};$
 $\sigma_s=13.4\pm7.3 \, ({
m stat+syst}) \, {
m pb}, \quad {
m combined, 8\, TeV}.$

Observed significance is 2.5σ (1.1 σ expected)

[1] CMS-TOP-13-009 (Submitted to J. High Energy Phys.)

Wt channel at CMS

- First observation of Wt production channel at 8 TeV
- Analysis of events with two oppositely charged leptons
- Signal extracted from a simultaneous binned likelihood fit to BDT discriminant over the signal and background control regions

$$|f_{\rm LV}V_{tb}| = 1.03 \pm +0.12(exp.) + 0.04(th.)$$
 13%

$$\sigma({
m Wt}) = 23.4 \pm 5.4 {
m ~pb}$$

23%

$$|V_{tb}| > 0.78 @95\% CL (f_{LV} = I, V_L = V_{tb})$$

Observed significance is 6.1σ (5.4 σ expected)

[1] CMS Collaboration, Phys. Rev. Lett. 112 (2014) 231802

Wt channel at ATLAS

- **Observation** of **Wt production channel** at 8 TeV
- Two oppositely charged leptons are considered
- Signal extracted via profile likelihood fit over the signal and background control regions
- First fiducial cross section (Wt+ttbar) measured for two selected leptons with $p_T > 25$ GeV, $|\eta| < 2.5$, one b jet with $p_T > 20$ GeV, $|\eta| < 2.5$ and $E_T^{miss} > 20$ GeV

$$\sigma_{\text{fiducial}} = 0.85 \pm 0.01(\text{stat.})^{+0.06}_{-0.07}(\text{syst.}) \pm 0.03(\text{lumi.}) \text{ pb}$$

9%

$$|f_{\rm LV}V_{tb}| = 1.01 \pm 0.10$$

10%

Observed significance is 7.7σ (6.9 σ expected)

$$|V_{tb}| > 0.80 @95\% CL (f_{LV} = I, V_L = V_{tb})$$

[1] ATLAS Collaboration, JHEP 01 (2016) 064

Wt combination at LHC

- New LHC combination for Wt production cross sections at 8 TeV
- Results are combined using the best linear unbiased estimator (**BLUE**) method
- Combination results in an improved precision of 16% (ATLAS - 17%, CMS - 23%)
- The dominant uncertainties are due to **theory modeling** (ISR/FSR, Scale, Parton shower, etc.)

Source	Uncertainty		
Source	(%)	(pb)	
Data statistics	4.7	1.1	
Simulation statistics	0.8	0.2	
Luminosity	3.6	0.8	
Theory modelling	11.8	2.7	
Background normalization	2.2	0.5	
Jets	6.2	1.4	
Detector modelling	4.9	1.1	
Total systematics (excl. lumi)	14.4	3.3	
Total systematics (incl. lumi)	14.8	3.4	
Total uncertainty	15.6	3.6	

$$\sigma_{
m Wt} = 23.1 \pm 1.1 \; ({
m stat.}) \pm 3.3 \; ({
m syst.}) \pm 0.8 \; ({
m lumi.}) \; {
m pb} = 23.1 \pm 3.6 \; {
m pb}$$

$$|f_{
m LV}V_{
m tb}|=1.02\pm0.09$$
 9%

Summary on single top production at LHC

Anomalous Wtb couplings

- Single top production cross section is proportional to the size of Wtb interaction
- Provides the direct measurement of $|V_{tb}|$ and allows one to **probe anomalous Wtb couplings**: vector (V_R) and tensor (g_L, g_R)
- Top quarks are **polarized** in the single top production $(P \approx 0.9)$
- ▶ Look for differences in kinematical and angular distributions in the presence of anomalous couplings

$$\mathcal{L}_{\text{tWb}}^{\text{anom.}} = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} (V_{\text{L}} P_{\text{L}} + V_{\text{R}} P_{\text{R}}) tW^{-}_{\mu} - \frac{g}{\sqrt{2}} \overline{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{\text{W}}} (g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}}) tW^{-}_{\mu} + \text{h.c.}$$

In SM: $V_L = V_{tb} \approx I$ with V_R , g_L and g_R vanishing at LO

Top quark polarization at CMS

- First measurement of top quark spin asymmetry (sensitive to top quark polarization) in high purity **t channel**
- Probe the coupling structure via spin asymmetry
- Analysis in muon+jets events

Spin projection is measured along the direction of the recoiling spectator quark momentum

$$A_X \equiv \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

Results are consistent with SM ($A_{\mu}^{SM} = 0.44$), p-value = 4.6%

Double differential asymmetry at ATLAS

- Perform a normalized double differential angular measurement in θ^* and ϕ^* in single top events
- The triple differential decay rate of the top quark is expressed in the form of parametrized spherical harmonics

[1] ATLAS Collaboration, JHEP 04 (2016) 023

Two-dimensional limits at 95% CL correlation = 0.11

$$\operatorname{Re}\left[\frac{g_{\mathrm{R}}}{V_{\mathrm{L}}}\right] \in [-0.36, 0.10]$$

$$\operatorname{Im}\left[\frac{g_{\mathrm{R}}}{V_{\mathrm{L}}}\right] \in [-0.17, 0.23]$$

FCNC with top quarks

Top + gluon

Top + Z

- Flavour-changing neutral current (FCNC) is forbidden in SM at tree level by the Glashow-lliopoulos-Maiani (GIM) mechanism
- Only possible at higher orders via loops induced processes → highly suppressed
- ▶ FCNC decays could be enhanced in various BSM

$$\mathcal{L} = \sum_{q=u,c} \left[\sqrt{2} g_s \stackrel{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_{Gq}^L P_L + f_{Gq}^R P_R) q G_{\mu\nu}^a \right]$$

$$+ \frac{g}{\sqrt{2} c_W} \stackrel{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu\nu}$$

$$- e \stackrel{\kappa_{\gamma qt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{\gamma q}^L P_L + f_{\gamma q}^R P_R) q A_{\mu\nu}$$

$$+ \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} (f_{Hq}^L P_L + f_{Hq}^R P_R) q H \right] + \text{h.c.}$$

Top + gamma

Top + Higgs

Summary on FCNC searches

CMS Collaboration, JHEP 04 (2016) 035

Latest results:

- t→gq (ATLAS Collaboration, Eur. Phys. J. C (2016) 76:55): the most stringent limit on this decay
- $t \rightarrow \gamma q$ (CMS Collaboration, JHEP 04 (2016) 035): the only existing analysis to probe this coupling

Conclusion

- Single top production provides unique environment to test the SM and to search for new physics by probing anomalous couplings
- Several new single top results are available from LHC Run 2 experiments: t channel inclusive and differential cross sections
- ▶ All results show good agreement with SM predictions
- Looking forward to more data, more results and only good surprises

Top quark public results: <u>ATLAS</u>, <u>CMS</u>, <u>CDF</u>, <u>D0</u>

Backup slides

Top quark has special powers

Top quark is the **heaviest** elementary particle known

An excellent candidate to study **EW symmetry** breaking mechanism and fermion mass hierarchy due to its large Yukawa coupling $(y_{+}\approx 1)$

Almost exclusively decays to W boson and b quark

The short lifetime ($\tau \approx 4 \times 10^{-25}$ s) of a top quark makes it decay before any hadronization occurs to produce bound states

Distinctive experimental signature

The **new physics** could manifest itself in observed anomalies of the top quark production and decays

Single top event candidate in 13 TeV data

Single top quark manufacturing

- ▶ Top quark discovered at Fermilab
- Dbservation of *inclusive single top* production at Tevatron ²
- Rediscovered **t** channel at LHC ³
- Observation of Wt production at LHC ⁴
- Dbservation of **s** channel at Tevatron ⁵

[1] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 74, 2626 (1995); S. Abachi et al., D0 Collaboration, Phys. Rev. Lett. 74, 2632 (1995)

[2] <u>T. Aaltonen et al., CDF Collaboration, Phys. Rev. Lett. 103, 092002</u> (2009); <u>V. M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 103, 092001 (2009)</u>

[3] <u>ATLAS Collaboration, Phys. Lett. B 717, 330-350 (2012); CMS Collaboration, JHEP 12 (2012) 035</u>

[4] CMS Collaboration, Phys. Rev. Lett. 112 (2014) 231802; CMS Collaboration, Phys. Rev. Lett. 110, 022003 (2013)

[5] <u>T. Aaltonen et al., CDF and D0 Collaborations, Phys. Rev. Lett.</u> 112, 231803 (2014)

Tools

Top quark mass in single top at CMS

- ▶ Measurement of top quark mass in **t channel** (purity \approx 75%)
- Muon+jets channel is considered
- Mass extracted from the reconstructed top quark mass through an extended unbanned maximum likelihood fit
- Signal parametrization is done with Crystal Ball function
- Total uncertainty on the measurement is driven by several sources (JES, signal modelling, fit calibration, etc.)

$$m_{
m t} = 172.60 \pm 0.77~{
m (stat)}~^{+0.97}_{-0.93}~{
m (syst)}~{
m GeV}$$

[1] <u>CMS-PAS-TOP-15-001</u>

Top quark mass in single top at ATLAS

- ▶ Measurement of top quark mass in t channel (purity ≈ 70%)
- ▶ Neural network to reduce the background (ttbar not included in the training)
- Invariant mass of charged lepton and b jet as an estimator for top quark mass
- ▶ Template method to determine the mass via likelihood fit
- Main systematic uncertainties: JES, signal modelling, background normalization, etc.

[1] <u>ATLAS-CONF-2014-055</u>

$$m_{\text{top}} = 172.2 \pm 0.7(\text{stat.}) \pm 2.0(\text{syst.}) \text{ GeV}$$

Summary on top quark mass measurements

Summary on top quark mass measurements

Single top event generation

Experiment	Generator	Order
CDF	POWHEG-BOX	NLO
DO	SINGLETOP	NLO
ATLAS	POWHEG-BOX, MG5_aMC@NLO	NLO
CMS	MG5_aMC@NLO, POWHEG-BOX	NLO

s channel at Tevatron

- Observation of s channel at Tevatron
- Combination of I+jets (CDF and D0) and E_T^{miss}
 +jets (CDF) channels
- ▶ W+jets backgrounds normalized to data
- \triangleright Observed with S = 6.3 σ (expected 5.1 σ)
- Probability to observe an excess in the absence of signal is 1.8×10^{-10}

$$p(\sigma_s) = \int L(\sigma_s, \{\theta\} | \text{data}) \pi(\sigma_s) \Pi(\{\theta\}) d\{\theta\}$$

Systematic uncertainty	CDF		D0		Corre-
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2-10%	•	3 – 8%		Yes
Background (simulation)	2-12%	•	2-11%	•	Yes
Background (data)	15-40%	•	19 – 50%	•	No
Detector modeling	2-10%	•	1 - 5%	•	No
b-jet-tagging	10 - 30%		5 – 40%	•	No
JES	0-20%	•	0-40%	•	No

[1] T. Aaltonen et al., CDF Collaboration, D0 Collaboration, Phys. Rev. Lett. 112, 231803 (2014)

t channel measurement (uncertainties)

AII ASL		
Source	$\Delta\sigma_{tq}/\sigma_{tq} [\%]$	$\Delta\sigma_{\bar{t}q}/\sigma_{\bar{t}q}$ [%]
Data statistics	± 4.6	± 5.0
MC statistics	± 6.3	± 6.5
Multijet normalisation	± 0.8	± 2.4
Other background normalisation	± 1.4	± 0.5
Muon uncertainties	± 1.6	± 1.6
JES	± 5.5	± 1.6
Jet energy resolution	± 4.3	± 3.1
E _T ^{miss} modelling	± 4.2	± 4.5
b-tagging efficiency	± 7.1	± 7.5
c-tagging efficiency	< 0.5	< 0.5
Light-jet tagging efficiency	< 0.5	< 0.5
Pile-up reweighting	± 1.2	± 3.2
W+jets modelling	± 2.3	± 1.0
$t\bar{t}$, Wt and s-channel shower generator	< 0.5	± 2.3
tt,Wt and s-channel NLO matching	± 2.7	± 7.0
$t\bar{t},Wt$ and s-channel scale	± 2.6	± 0.9
t-channel scale	± 5.9	± 7.7
t-channel generator	± 11.0	± 15.0
PDF	< 0.5	± 1.0
Luminosity	± 5.0	± 5.0
Total systematic uncertainty	± 18.4	± 24.4
Total uncertainty	± 19.0	± 25.0

uncertainty source	$\Delta \sigma_{t-{ m ch.},t+ar{t}}/\sigma_{t-{ m ch.},t+ar{t}}^{ m obs}$	$\Delta \sigma_{t-{ m ch.},t}/\sigma_{t-{ m ch.},t}^{ m obs}$	$\Delta \sigma_{t-{ m ch.},ar{t}}/\sigma_{t-{ m ch.},ar{t}}^{ m obs}$
uncertainty of the fit (stat. + prof. unc.)	±6.8%	$\pm 7.4\%$	±11.9%
statistical uncertainty	$\pm 4.0\%$	$\pm 4.7\%$	±7.6%
profiled uncertainties	±5.5%	±5.7%	±9.2%
MC statistics	$\pm 2.8\%$	$\pm 3.4\%$	$\pm 4.0\%$
pileup	-0.2/+0.1%	-0.5/+0.4%	-0.1/+0.7%
experimental uncertainty	-6.2/+6.2%	-6.7/+6.7%	-10.0/+10.0%
Signal modeling	±7.9%	$\pm 10.1\%$	±8.2%
tī modeling	$\pm 4.3\%$	$\pm 3.9\%$	$\pm 4.6\%$
W+jets modeling	-2.1/+1.7%	-1.6/+1.1%	-2.8/+2.3%
Q^2 scale t-channel	-5.7/+7.0%	-7.1/+5.1%	-6.1/+6.9%
Q ² scale t t	-2.7/+4.1%	-2.5/+4.0%	-3.9/+3.4%
Q ² scale tW	-0.3/+0.5%	-0.4/+0.3%	-1.1/+0.4%
Q ² scale W+jets	-2.7/+3.0%	-2.5/+4.2%	-5/+2.4%
PDF uncertainty	-3.0/+2.6%	-3.1/+3.2%	-3.7/+4.2%
top $p_{\rm T}$ modeling	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.2\%$
total theory uncertainties	-12.1/+12.6	-13.8/+13.6	-13.5/+13.4%
luminosity	±2.7%	±2.7%	±2.7%
total uncertainty	-14.5/+14.8%	-16.3/+16.1%	-18.6/+18.6%

uncertainty source	$\Delta \sigma_{t-{ m ch.},t+ar t}/\sigma_{t-{ m ch.},t+ar t}^{ m obs}$	$\Delta \sigma_{t-{ m ch.},t}/\sigma_{t-{ m ch.},t}^{ m obs}$	$\Delta \sigma_{t-{ m ch.},\bar{t}}/\sigma_{t-{ m ch.},\bar{t}}^{ m obs}$
JES	±4.9%	±5.6%	±3.7%
JER	$\pm 0.7\%$	$\pm 0.2\%$	$\pm 1.5\%$
b-tagging efficiency	$\pm 2.3\%$	$\pm 2.1\%$	$\pm 1.6\%$
mis-tagging efficiency	$\pm 0.8\%$	$\pm 1.2\%$	$\pm 0.4\%$
lepton reconstruction/trigger	$\pm 2.5\%$	$\pm 2.0\%$	$\pm 2.9\%$

s channel measurement (uncertainties)

Source	Uncertainty (%)				
	μ, 7 TeV	μ, 8 TeV		μ + e, 8 TeV	7+8 TeV
Statistical	34	15	14	10	11
tī, single top quark rate	29	15	14	12	14
W/Z+jets, diboson rate	23	11	13	12	12
Multijet rate	9	3	5	2	2
Lepton efficiency	14	1	2	1	3
Hadronic trigger	5	_	_	_	1
Luminosity	10	5	6	4	6
JER & JES	66	39	29	34	18
b tagging & mistag	34	15	14	14	16
Pileup	6	11	7	9	7
Unclustered ₹ _T	5	8	2	6	5
$\mu_{ m R}, \mu_{ m F}$ scales	54	34	31	30	28
Matching thresholds	43	11	12	7	17
PDF	12	8	7	7	9
Top quark p_T reweighting	3	5	7	6	6
Total uncertainty	115	64	54	55	47

Type	$\pm \Delta \sigma / \sigma$ [%]
Data statistics	16
MC statistics	12
Jet energy resolution	12
t-channel generator choice	11
b-tagging	8
s-channel generator scale	7
W+jets normalization	6
Luminosity	5
t-channel normalization	5
Jet energy scale	5
PDF	3
Lepton identification	2
Electron energy scale	1
$t\bar{t}$ generator choice	1
Lepton trigger	1
Charm tagging	1
Other	< 1
Total ATLA	S 34

Wt combination at LHC (uncertainties)

Category	ATLAS CMS				ρ
Data statistics	Data statistics	5.8%	Fit statistics	8.1%	0.0
Category subtotal		5.8%		8.1%	0.0
Simulation statistics	Sim. statistics	0.5%	Sim. statistics	2.4%	0.0
Category subtotal		0.5%		2.4%	0.0
Luminosity		4.6%		3.0%	_
Category subtotal		4.6%		3.0%	0.31
Theory modelling	ISR/FSR	8.8%	Ren./fact. scale	12.4%	1.0
	NLO matching method	2.5%			_
	Parton shower	1.7%	ME/PS match. thr.	14.1%	1.0
	PDF	0.6%	PDF	1.7%	1.0
	Wt/tt̄ overlap	3.5%	DR/DS scheme	2.1%	1.0
			Top $p_{\rm T}$ reweight.	0.4%	_
Category subtotal		10.0%		19.0%	0.75
Background normalization	bkg. mod.	2.8%	tt̄ cross section	1.7%	0.0
			Z+jets	2.6%	
Category subtotal		2.8%		3.1%	0.0
Jets	JES common	5.3%	JES	3.8%	0.0
	JES flavour	1.9%			
	Jet id	0.2%			-
	Jet res.	6.5%	Jet resolution	0.9%	0.0
Category subtotal		8.6%		3.9%	0.0
Detector modelling	Lepton modelling	3.0%	Lepton modelling	1.8%	0.0
ŭ	MET scale	5.5%	MET modelling	0.4%	0.0
	MET resolution	0.2%			—
	b-tagging	1.0%	b tagging	0.9%	0.0
	Pileup	2.7%	Pileup	0.4%	0.0
Category subtotal		6.9%		2.0%	0.0
Total		16.8%		21.7%	0.40

ttbar production at LHC

$$\frac{\sigma_{t\bar{t}}(13\text{TeV})}{\sigma_{t\bar{t}}(8\text{TeV})} \simeq 3.2 \quad \frac{\sigma_{\text{s}}(13\text{TeV})}{\sigma_{\text{s}}(8\text{TeV})} \simeq 2 \qquad \frac{\sigma_{\text{t}}(13\text{TeV})}{\sigma_{\text{t}}(8\text{TeV})} \simeq 2.5 \qquad \frac{\sigma_{\text{Wt}}(13\text{TeV})}{\sigma_{\text{Wt}}(8\text{TeV})} \simeq 3.2$$

W boson helicity

- W helicity projection of W's spin on its momentum
- ▶ Helicity fractions: $F_{L,R,0} = \Gamma_{L,R,0} / \Gamma(t \rightarrow Wb)$, $\Sigma F_i = I$
- Helicity is sensitive to the real part of Wtb anomalous couplings

$$\rho(\cos\theta_\ell^*) \equiv \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_\ell^*} = \frac{3}{8} (1 - \cos\theta_\ell^*)^2 F_\mathrm{L} + \frac{3}{4} \sin^2\theta_\ell^* F_0 + \frac{3}{8} (1 + \cos\theta_\ell^*)^2 F_\mathrm{R}$$

@NNLO

$$F_0 = 0.687 \pm 0.005$$

$$F_L = 0.311 \pm 0.005$$

$$F_R = 0.0017 \pm 0.0001$$

Phys. Rev. D 81 (2010) 111503

 θ^* helicity angle:

W boson helicity in t channel at CMS

- First measurement of W boson helicity in single top quark event topology
- Single top statistics accompanied by ttbar events also used to extract helicity fractions
- F₀, F_L and W+jets fraction are free parameters in the fit

Best fit gives
$$Re(g_L) = -0.017$$
, $Re(g_R) = -0.008$

36

$$F_{\rm L} = 0.298 \pm 0.028 \, ({
m stat}) \pm 0.032 \, ({
m syst}),$$

 $F_0 = 0.720 \pm 0.039 \, ({
m stat}) \pm 0.037 \, ({
m syst}),$
 $F_{\rm R} = -0.018 \pm 0.019 \, ({
m stat}) \pm 0.011 \, ({
m syst}),$

Measured helicity fractions are consistent with SM

[1] CMS Collaboration, J. High Energy Phys. 01 (2015) 053

Forward-backward asymmetry

- Measure forward-backward asymmetry in the normal direction (A^N_{FB}) in single top events
 → probe complex phase of g_R
- In ttbar:
 - ▶ Top quarks are only slightly polarized due to EW corrections \rightarrow no A_{FB} asymmetry
- ▶ In single top:
 - ▶ Top quark is highly polarized ($P \approx 0.9$)
 - Two new reference directions: **N** and **T**
- ▶ A presence of FB asymmetry would be a sign of CP violation in top quark decays

$$A_{FB}^{N} \equiv \frac{N_{evt}(cos\theta^{N} > 0) - N_{evt}(cos\theta^{N} < 0)}{N_{evt}(cos\theta^{N} > 0) + N_{evt}(cos\theta^{N} < 0)}$$

$$\vec{N} = \vec{s}_t \times \vec{q}$$
 $\vec{T} = \vec{q} \times \vec{N}$

AFB in single top at ATLAS

- ▶ Measure A_{FB} asymmetry in lepton+jets events
- Asymmetry extracted with unfolding the $\cos\theta^{N}$ distribution
- g_R assumed to be purely imaginary

$$A_{\rm FB}^{\rm N} = 0.031 \pm 0.065 \, ({\rm stat.}) \, ^{+0.029}_{-0.031} \, ({\rm syst.})$$

First experimental limit on Im(g_R) of [-0.20, 0.30] at 95% CL

[1] <u>ATLAS-CONF-2013-032</u>

Summary on FCNC searches

- ▶ Flavour-changing neutral current (FCNC) → process where a fermion changes its flavour with preserving its charge
- FCNC amplitudes are forbidden at tree level by the Glashow-Iliopoulos-Maiani (GIM) mechanism [Phys. Rev. D2 (1970) 1285] in SM
- FCNC is only possible in SM at higher orders via loops induced processes → highly suppressed
- FCNC decays could be enhanced in various BSM

FCNC in BSM

	2HDM	MSSM	RS
BR(t→cg)	10-8 - 10-4	10 ⁻⁷ - 10 ⁻⁶	10-10
BR(t→cZ)	10-10 - 10-6	10 ⁻⁷ - 10 ⁻⁶	10-5
BR(t→c γ)	10-9 - 10-7	10-9 - 10-8	10-9
BR(t→cH)	10-5 - 10-3	10 ⁻⁹ - 10 ⁻⁵	10-4

K. Agashe et al., arXiv:1311.2028

FCNC in SM

$$BR(t\rightarrow c\mathbf{g}) \simeq 5 \times 10^{-12}$$

$$BR(t \rightarrow cZ) \simeq 1 \times 10^{-14}$$

$$BR(t\rightarrow c\mathbf{y}) \simeq 5 \times 10^{-14}$$

$$BR(t \rightarrow cH) \simeq 3 \times 10^{-15}$$

$$BR(t\rightarrow uX) \simeq BR(t\rightarrow cX) |V_{ub}/V_{cb}|^2$$

J.A.Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695-2710

Search for single top FCNC at ATLAS

- Search for flavor changing neutral currents (FCNC) in single top events
- Event topology is a top quark leptonic decay
- Main background is W+jets
- Most stringent limits to date on FCNC t→gq BR

[1] ATLAS Collaboration, Eur. Phys. J. C (2016) 76:55

Search for top+gamma FCNC at CMS

- Search for FCNC in single top+γ events
- Main background is W(γ) +jets
- The only existing analysis to search for t→γq decays

[1] CMS Collaboration, JHEP 04 (2016) 035

FCNC NLO corrections are sizable (k≈ 1.375 @ 50GeV)

Wy+jets and W+jets measured from data

using cos(W,y) template fit

Limits @NLO

$$\kappa_{uyt}/\Lambda < 0.025 \text{ TeV}^{-1}$$
 $\kappa_{cyt}/\Lambda < 0.091 \text{ TeV}^{-1}$
 $\text{BR}(t \rightarrow yu) < 0.01 \% \text{ (obs)}$
 $0.02 \% \text{ (exp)}$
 $\text{BR}(t \rightarrow yc) < 0.17 \% \text{ (obs)}$
 $0.20 \% \text{ (exp)}$

Search for top+Z FCNC at CMS

- Search for FCNC in single top+Z events in trilepton channel
- Main background is WZ +jets, fake leptons

$$BR(t\rightarrow \mathbf{Z}u) < 0.51 \% \text{ (obs)}$$
 $0.61 \% \text{ (exp)}$
 $BR(t\rightarrow \mathbf{Z}c) < 0.11 \% \text{ (obs)}$
 $0.16\% \text{ (exp)}$

$$BR(t\rightarrow gu) < 0.56 \% \text{ (obs)}$$
 $0.56 \% \text{ (exp)}$
 $BR(t\rightarrow gc) < 0.71 \% \text{ (obs)}$
 $1.03 \% \text{ (exp)}$

$$\kappa_{\rm Zut}/\Lambda < 0.45 {\rm \, TeV^{-1}}$$
 $\kappa_{\rm Zct}/\Lambda < 2.27 {\rm \, TeV^{-1}}$
 $\kappa_{\rm ugt}/\Lambda < 0.10 {\rm \, TeV^{-1}}$
 $\kappa_{\rm cgt}/\Lambda < 0.35 {\rm \, TeV^{-1}}$

[1] <u>CMS-PAS-TOP-12-021</u>

Summary on FCNC searches (references)

HERA:

ZEUS Collaboration, Phys. Lett. B708 (2012) 27; H1 Collaboration, Phys. Lett. B 678 (2009) 450; A.A. Ashimova and S.R. Slabospitsky, Phys. Lett. B668 (2008) 282

LEP:

ALEPH Collaboration, Phys. Lett. B543 (2002) 173; DELPHI Collaboration, Phys. Lett. B590 (2004) 21; OPAL Collaboration, Phys. Lett. B521 (2001) 181; L3 Collaboration, Phys. Lett. B549 (2002) 290; LEP Exotica WG, LEP Exotica WG 2001-01

TEVATRON:

CDF Collaboration, Phys. Rev. Lett. 101 (2008) 192002; DØ Collaboration, Phys. Lett. B701 (2011) 313; CDF Collaboration, Phys. Rev. Lett. 102 (2009) 151801; DØ Collaboration, Phys. Lett. B693 (2010) 81; CDF Collaboration, Phys. Rev. Lett. 80 (1998) 2525

• CMS:

CMS Collaboration, Phys. Rev. Lett. 112 (2014) 171802; CMS Collaboration, CMS-PAS-TOP-14-007; CMS Collaboration, CMS-PAS-TOP-14-019

ATLAS:

ATLAS Collaboration, arXiv:1509.00294; ATLAS Collaboration, arXiv:1508.05796; ATLAS Collaboration, TOPQ-2014-14