

ALICE upgrade plans and potential

P. Antonioli INFN – Bologna (Italy) On behalf of the ALICE Collaboration

oli - The ALICE upgrade

What is an upgrade?

What in this talk?

Observables we would like to see and current limitations

Upgrade strategy: where/how to improve the detector?

Expected performance and physics outputs

- RHIC "picture" of the created hot matter confirmed @ LHC: "a strongly-coupled plasma with very short mean free path"
- QGP as a near perfect liquid: radial & elliptic flow
- QCD energy loss in the QGP
- Evidence of collectivity and strangeness enhancement in high multiplicity events in pp and p-Pb remains a puzzle

- Heavy quarks take part in collective expansion
- Still challenging to see expected hierarchy in energy losses
- Distinguish between b/c energy losses is limited to high p_T
- No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

ALICE

- RHIC "picture" of the created hot matter confirmed @ LHC: "a strongly-coupled plasma with very short mean free path"
- QGP as a near perfect liquid: radial & elliptic flow
- QCD energy loss in the QGP
- Evidence of collectivity and strangeness enhancement in high multiplicity events in pp and p-Pb remains a puzzle

- Heavy quarks take part in collective expansion
- Still challenging to see expected hierarchy in energy losses
- Distinguish between b/c energy losses is limited to high p_T
- No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

- RHIC "picture" of the created hot matter confirmed @ LHC: "a strongly-coupled plasma with very short mean free path"
- QGP as a near perfect liquid: radial & elliptic flow
- QCD energy loss in the QGP
- Evidence of collectivity and strangeness enhancement in high multiplicity events in pp and p-Pb remains a puzzle

- Heavy quarks take part in collective expansion
- Still challenging to see expected hierarchy in energy losses
- Distinguish between b/c energy losses is limited to high p_T
- No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

- RHIC "picture" of the created hot matter confirmed @ LHC: "a strongly-coupled plasma with very short mean free path"
- QGP as a near perfect liquid: radial & elliptic flow
- QCD energy loss in the QGP
- Evidence of collectivity and strangeness enhancement in high multiplicity events in pp and p-Pb remains a puzzle

- Heavy quarks take part in collective expansion
- Still challenging to see expected hierarchy in energy losses
- Distinguish between b/c energy losses is limited to high p_T
- No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

Quarkonia: hadronize or recombine?

- J/ψ suppression QGP "smoking gun": quarkonia states melting as a plasma thermometer
- Higher $\sqrt{s_{NN}}$ increases heavy quark production \rightarrow possibility of recombination

Reduced suppression with respect to RHIC Theoretical models which include $\sim 50\%$ of the low- p_{T} J/ψ via recombination describe data

- \rightarrow theor. uncertainties linked to total $\sigma_{c\bar{c}}$ + CNM effects
- \rightarrow recombination contributes mainly at low p_{T}

Statistical hadronization or kinetic recombination?

- ψ (2S) can help to disentangle mechanism at work
- Double ratio has less dependency on $\sigma_{c\bar{c}}$
- CMS/ALICE measurements showed some tensions
- \rightarrow Precision must be improved

1/(r) Y(15)

χ_b(1P)

J/ψ(15)

χ_c(1P)

1.2

≤ 1

Low mass di-leptons

- EM radiation is produced at all stages of the collision \rightarrow
 - leptons don't interact \rightarrow
 - spectrum retains information of the entire system evolution!
- Temperature dependence encoded in invariant mass spectrum
- Space-time evolution of the system

Design a strategy to better see...

Our starting glasses are ALICE sub-detectors... how can we improve them?

• Study the thermalization of partons in the QGP, with focus on charm and beauty quarks at low $p_{\rm T}$

 \rightarrow secondary vertices \rightarrow improve inner tracker

- Low-momentum charmonia dissociation (and regeneration?) to study deconfinement and medium temperature
- Production of thermal photons and low-mass dileptons emitted by QGP to study initial temperature and equation of state of the medium

 \rightarrow exploit low $p_{\rm T}$ reach & PID / DCA cuts \rightarrow again inner tracker

• Precision study of light nuclei and hyper-nuclei

All this cannot be selected at trigger level (very large combinatorial background) → read out everything!

Move from 1 kHz to 50 kHz in PbPb!

When?

 $\sqrt{s_{NN}} = 5.5 \text{TeV}$

2022

Shutdown/Technical stop

Proton physics Commissioning

lons

2023

2021

- L_{int} 10²⁷ cm⁻²s⁻¹ → (goal) 6 10²⁷ cm⁻²s⁻¹ → 50 KHz int. rate (LHC collimators upgrade)
- Besides Pb-Pb, p-Pb and pp at \sqrt{s} =5.5 TeV
- ALICE request: 10 nb⁻¹ at B=0.5 T (+ 3 nb⁻¹ at B=0.2 T)

LHC operates at higher energies and at vanishing baryon chemical potential

- \rightarrow best suited for measurement of QGP properties
- \rightarrow abundance of calculable QCD processes (heavy quarks)

 $\sqrt{s_{NN}} \sim 5 \text{TeV}$

2016

2025

2015

2024

2017

2026

2018

2027

2019

LS2

2028

2020

P. Antonioli - The ALICE upgrade

Upgrade the inner tracker

Upgrade the inner tracker

10

6

8

p_⊤ [GeV/d]4

	· · · · · · · · · · · · · · · · · · ·				
	ITS	ITS UPGRADE	MFT	ê100	
# layers	6	7	5	C) (
Rapidity coverage	η <0.9	η <1.5	-3.6<η<-2.4	⁰⁸ 08	
r _{min}	3.9 cm	2.3 cm	/		ALICE
Material budget per layer	1.1% X ₀	0.3-0.8% X ₀	0.6%X ₀	40	Current ITS Upgraded ITS IB: X/X _o = 0.3%; OB: X/X _o = 0.8%
Spatial resolution	12 x 100 μm² 35 x 20 μm² 20 x 830 μm²	\sim 5 x 5 μm^2	\sim 5 x 5 μ m ²	20	
Max Pb-Pb readout rate	1 kHz	100 kHz	100 kHz		
Absorber MFT FIT MFT		5 dis	Prompt Displaced J/W J/W J/W J/W B hadron	pointing resolution	$p_{T} (GeV/c)$
					Better than 100 μm for ^p T>1 GeV/c

ITS Outer Barrel

P. Antonioli - The ALICE upgrade

18 June 2016 - LHCP 2016

at.t_piiR_93246

20

0

0

2

Monolithic Active Pixel Sensors

MAPS attractive technology for ALICE due to:

- Reduction of material budget (sensor&readout integrated) 350 μm \rightarrow 50-100 $\mu\text{m}/\text{layer}$

- Limited radiation tolerance and moderate readout time: still fitting for ALICE (700 krad foreseen for innermost layer)!

ALICE baseline: MAPS using CMOS 0.18 μ m technology (TowerJazz)

Pixel pitch $\sim 30~\mu m$ x 30 μm High resistivity (>1 k Ω) epitaxial layer PMOS transistor for readout on top of deep p-well

- PMOS/NMOS in the same pixel cell
- deep p-well junction reflects signal electrons
- signal collected by the sensing diode only

Final version of MAPS chip (ALPIDE = ALICE Pixel Detector) due July 2016 (after 3 prototype runs) \rightarrow start production end of the year 29 µm x 27 µm pixel pitch Power consumption: 40 mW/cm² Efficiency > 99% Noise probability: < 10⁻⁶

From plots & drawings to pictures

Collect large statistics with the TPC

Current MWPC readout limits event readout rate to \sim 3 kHz (ALICE TPC operated with active ion Gating Grid. Readout time (100 µs) + GG closure time (200 µs))

GEM (Gas Electron Multiplier) technology reduces ion backflow

With GEM TPC continuous readout possible @Pb-Pb interaction rate: 50 kHz, preserving tracking, p resolution and PID capabilities

R&D work (and pictures...)

ALICE

To effectively reduce IBF a GEM stack is needed \rightarrow 4 GEM scheme with optimization of holes

80

140

O²: adapt online & offline

The challenges:

Target luminosity implies 1 TB/s \rightarrow Data reduction is key

 \rightarrow Online calibration needed

Asy

The new infrastructure

O²: new facility @ LHC Point 2 100 k CPU cores 60 PB of storage

Т	Detectors electronics	
	Continuous and triggered streams of raw data	
chronous	Readout, split into Sub-Time Frames, and aggregation Local pattern recognition and calibration Local data compression Quality control	
Syr	Compressed Sub-Time Frames	
	Data aggregation Synchronous global reconstruction, calibration and data volume reduction Quality control	
	Compressed Time Frames	
	Data storage and archival	
nchronous	Compressed Time Frames	Reconstructed events
	Asynchronous refined calibration, reconstruction Event extraction Quality control	

- Data transfer in continuous mode fashion or by using minimum bias trigger
- Dedicated time markers used to 'chop' data in Time Frames to be inspected
- Local compression (i.e. for TPC cluster finding)
- Online calibration & global reconstruction replace original raw data with compressed data

The O² system will perform calibration and reconstruction **concurrently** with data taking

Expected performance

FOCUS FOCUS FOCUS FOCUS FOCUS

- Reduction of uncertainties for charm
- Separation between beauty and charm
- Full reconstruction of B decays
- Measurements of heavy-flavor baryons
- Low mass di-leptons: e^+e^- (barrel) and $\mu^+\mu^-$ (MFT)
- Ψ (2S) \rightarrow discrimination between models of recombination
- and more.... (light nuclei)

D⁰ as reference candle for charm

Separation between charm and beauty

B.R.(B \rightarrow D⁰ + X) ~60%

B: $c\tau \sim 460-490 \text{ mm} \rightarrow \text{exploit impact parameter shape}$

With upgraded ITS resolution improves by factor 3 → Better separation of the two components

This is also valid for displaced $J/\psi \rightarrow$ opens in the barrel for the study of $B \rightarrow J/\psi (\rightarrow e^+e^-) + K$

P. Antonioli - The ALICE upgrade

From run 1 to run 3-4... beauty looks better

ALICE

Beauty and charm energy loss

Move from "first clear indication of $\Delta E_c > \Delta E_b$ " to test quantitative description as a function of p_T

18 June 2016 - LHCP 2016

P. Antonioli - The ALICE upgrade

Hadrochemistry: in medium hadronization for heavy flavor?

- In QGP higher s abundance \rightarrow D_s enhanced if charm hadrons form predominantly in in-medium hadronization
- Λ_c for the first time accessible in PbPb.
- Discrimination among different models of hadronization (thermal vs coalescence). Inmedium recombination $\rightarrow \Lambda_c/D^0$ increases at intermediate momenta

Charmonium: deconfined charm quarks in the QGP phase?

Low mass di-leptons

Rapp Sum

- ITS and MUON+MFT enable M_{ee} and M_{uu} studies
- ITS reduced thickness reduces conversion
- High rate + low B \rightarrow increase electron acceptance / use PID
- ITS/MFT spatial resolution \rightarrow reject charm decays

Temperature can be extracted via $\frac{dN}{dM_{ee}} \propto \exp\left(-\frac{M_{ee}}{T_{fit}}\right)$

PbPb @\s_{NN} = 5.5 TeV

Statistical error on the slope < 10% for M_{ee}

Low mass di-leptons

- ITS and MUON+MFT enable M_{ee} and $M_{\mu\mu}$ studies
- ITS reduced thickness reduces conversion
- High rate + low B \rightarrow increase electron acceptance / use PID
- ITS/MFT spatial resolution \rightarrow reject charm decays

Summary

ALICE has a comprehensive upgrade programme starting to move in its implementation phase

LS2 (2019-2020) is a major ALICE upgrade:

- Improved tracking precision (ITS+MFT) at low p_T mid/fwd y
- Readout at 50 kHz in PbPb via TPC (+ readout upgrade)
- New paradigm for Online/Offline operations
- New triggering detector

- It will extend ALICE life cycle up to 2029. First PbPb physics data in 5 years from now.
- The upgrade strategy is oriented to explore low p_T observables to study QGP properties in particular using heavy flavor probes and invariant mass di-leptons
- The ALICE upgrade physics programme is **unique and complementary**^{*} (so... unique strengths!) with respect to other observables studied by other LHC detectors.
- A Forward Calorimeter (to be installed during LS3) with focus on saturation physics also under discussion