Heavy Ion Collisions: Theory overview

T. Lappi

University of Jyväskylä, Finland

LHCP 2016, Lund, Sweden
Outline

This talk:

- Condensed matter physics of QCD
- Thermalization
- HI event characterization: from models to global analysis
- Small systems and limits of collectivity
- Jet quenching, EM probes
Why heavy ion collisions

- QCD prediction: deconfined phase at $T \gtrsim 150$ MeV
- QCD in the laboratory: fundamental (emergent) properties of QCD
- How: heavy ion collisions at various collider energies
- Not only rare events, global characteristics of collision

Simultaneously understand:
- Initial conditions, thermalization
- Spacetime evolution: hydrodynamics
- Hadronic phase
- Hard and electromagnetic probes from all stages
Introduction

Initial stages and thermalization

Global characterization of bulk

Small systems: limits of collectivity

Jets and EM probes

Conclusions
Initial state: small x QCD

- Gluons ending in central rapidity region: multiple splittings from valence quarks
- Emission probability $\alpha_s \frac{dx}{x}$
 \Rightarrow rapidity plateau for $\Delta y \ll 1/\alpha_s$
- Many gluons
 \Rightarrow large phase space density

Weak coupling, but nonperturbative

- α_s small
- $f(k) \sim A_\mu A_\mu \sim 1/\alpha_s$ large

True when typical momentum $Q_s \gg \Lambda_{QCD}$
\Rightarrow gets better at large \sqrt{s}
Classical fields, kinetic theory, hydro

State of the art in QCD calculations for initial stages:

IPglasma Schenke et al 2012 –

- Classical color fields
- Nucleon- and subnucleon scale fluctuations
Classical fields, kinetic theory, hydro

State of the art in QCD calculations for initial stages:

- QCD kinetic theory ("EKT")
 - follow system to hydrodynamics

IPglasma Schenke et al 2012 –
 - Classical color fields
 - Nucleon- and subnucleon scale fluctuations

Keegan et al arXiv:1605.04287
Introduction

Initial stages and thermalization

Global characterization of bulk

Small systems: limits of collectivity

Jets and EM probes

Conclusions
Hydrodynamical description of soft observables

Need:

- Initial conditions
- Hydrodynamical evolution:
 - Energy-momentum conservation \(\partial_\mu T^{\mu\nu} = 0 \)
 - Medium properties: EoS, transport coefficients
- Freezeout to particles

(E.g. viscosity \(\eta \))

Niemi et al arXiv:1504.02677
Hydrodynamical description of soft observables

Need:
- Initial conditions
- Hydrodynamical evolution:
 - Energy-momentum conservation $\partial_\mu T^{\mu\nu} = 0$
 - Medium properties: EoS, transport coefficients
- Freezeout to particles

Calculate:
- p_T-spectra (yields, $\langle p_T \rangle$)
- Azimuthal harmonics (v_n's)
- Reaction plane correlations
- ...

All of these for
- Identified particles
- Centrality classes

Niemi et al arXiv:1504.02677
Hydrodynamical description of soft observables

Need:
- Initial conditions
- Hydrodynamical evolution:
 - Energy-momentum conservation \(\partial_\mu T^{\mu\nu} = 0 \)
 - Medium properties: EoS, transport coefficients
- Freezeout to particles

Calculate:
- \(p_T \)-spectra (yields, \(\langle p_T \rangle \))
- Azimuthal harmonics (\(V_n \)’s)
- Reaction plane correlations
 - . . .

All of these for
- Identified particles
- Centrality classes

Niemi et al arXiv:1504.02677
Hydrodynamical description of soft observables

Need:
- Initial conditions
- Hydrodynamical evolution:
 - Energy-momentum conservation $\partial_\mu T^{\mu\nu} = 0$
 - Medium properties: EoS, transport coefficients
- Freezeout to particles

Calculate:
- p_T-spectra (yields, $\langle p_T \rangle$)
- Azimuthal harmonics (v_n’s)
- Reaction plane correlations
- ...

All of these for
- Identified particles
- Centrality classes

Niemi et al arXiv:1504.02677
Viscosity extraction, data-driven hydro

State of the art Bernhard et al arXiv:1605.03954: Bayesian global fit

In particular: initial entropy density parametrized & fit

\[s(x_T) \sim \left(\left(\frac{T_A(x_T) + T_B(x_T)}{2} \right)^p \right) \]

Data favors gluon saturation for particle production:
Viscosity extraction, data-driven hydro

State of the art Bernhard et al arXiv:1605.03954: Bayesian global fit

In particular: initial entropy density parametrized & fit

\[s(x_T) \sim \left(\frac{(T_A(x_T))^p + (T_B(x_T))^p}{2} \right)^{\frac{1}{p}} \]

Result for QCD shear viscosity
Current challenges in hydro

Improvements still needed to exploit even larger data set

- **Rapidity dependence**
 - Parametric/string models
 - Pang et al., Denicol et al., Bozek et al 2015
 - How to compute in microscopic theory?

- **Viscous corrections to freezeout** \(\implies \) higher \(p_T \)
 - Hydrodynamics has integrated \(T^{\mu\nu} \)
 - At the end need to match to microscopic \(f(p) \).
 - How to do out of equilibrium? (with viscosity)

- **How low** \((N_{ch}) \) **can you go?**
 . . .
Introduction

Initial stages and thermalization

Global characterization of bulk

Small systems: limits of collectivity

Jets and EM probes

Conclusions
“Small systems”: pPb & pp at high N_{ch}
See H.I: parallel 1 this morning

Observations

- Azimuthal correlations similar to AA
- Cumulant analysis: not a dijet correlation

\[
\phi \Delta \eta, \phi \Delta \phi \left(\begin{array}{c|c|c|c|c|c} \eta \Delta \phi \end{array} \right)
\]

<table>
<thead>
<tr>
<th>\eta \Delta \phi</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi \Delta \eta$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyze as yield/trigger or v_n:

What is the origin?

- Collective flow as in AA?
- Initial state gluon correlations?

($c_2\{4\}$: 4-particles, $\cos 2\varphi$)
(Note sign change at $N_{\text{trk}} \sim 60$)
Flow in hydro

† Interactions/collectivity
† Temperature/pressure gradients
⇒ Anisotropic force
⇒ acceleration
⇒ anisotropy in momentum

Pb-Pb collision: large system
⇒ nucleon scale matters little
⇒ initial geometry known

Also pp, pPb collisions?
† Hydrodynamics for ∼ 50 particles?
† Initial geometry not controlled

E.g. Bozek et al
arXiv:1407.6478
How to sort out smaller systems?

- Higher cumulants: flow vs. “nonflow”
- Longitudinal correlations
 - Implemented in string models,
 E.g. L. G. Pang et al, G. Denicol et al, Bozek et al. 2015
 - Weak coupling: first steps
- Mass ordering: hadronization?

How much collectivity from QCD scattering + hadronization vs. hydrodynamics?

Event plane decorrelation:
Schenke et al arXiv:1605.07158
Introduction

Initial stages and thermalization

Global characterization of bulk

Small systems: limits of collectivity

Jets and EM probes

Conclusions
Jet tomography
H.I. parallel 3 tomorrow

Dijet: calibration and probe

Quantify e.g. with dijet asymmetry

\[A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \]
Jet quenching: theory

Theory advances prompted by LHC data

- Structure of medium induced cascade: energy flow to soft gluons \rightarrow large angles
 Blaizot, Dominguez, Iancu, Mehtar-Tani; Kurkela, Wiedemann
 ...

- NLO corrections to medium parameter \hat{q}
 Wu, Liou, Mueller, Mehtar-Tani,
 Blaizot, Dominguez, Iancu, ...

- Monte Carlo for medium cascade: JEWEL, Q-PYTHIA, Martini, YaJEM, PYQUEN, ...

![Graph showing dijet energy imbalance vs. angle θ.]
Photons

Thermal photons & dileptons from plasma stage: only direct probe from deconfined phase

Problem: all these other sources of light...

Paquet et al arXiv:1509.06738

Edging towards solution of longstanding photon v_2 puzzle:

▶ Large yield: early plasma phase dominates
▶ Large $\cos 2\varphi$ asymmetry: late hadronic stage dominates

Difficult to get both
Open heavy flavor

“Open” = individual c, b quarks in medium, not in bound states

At LHC:
D-meson $R_{AA} \approx$ light hadrons

(Recall $R_{AA} = \frac{1}{[\text{geometry}]} \frac{d\sigma_{AA}}{d\sigma_{pp}}$.)

But theory very different!

- Light: medium itself + quenched jets
- Heavy: c, b quarks pushed by medium
 - flow
 - thermal noise

![Graph showing $D^0 R_{AA}$ vs p_T]
Heavy quarkonia

Quarkonia “melt” in quark-gluon plasma \(\Rightarrow \) thermometer!

So why is there less \(J/\psi \) suppression at LHC than at RHIC?

Thermometer complicated!

Need to understand:

- Production in pp & pA
- Dissociation in plasma (lattice)
- Propagation in medium (flow \(\Rightarrow p_T \))
- Regeneration from \(c \bar{c} \) pairs in dense medium \(\Rightarrow \) hadronization!

Making progress in all of these, but there is still work to do!
To summarize

- Progress in systematical extraction of fundamental properties of quark-gluon matter from experiment
- Still work to do, in nucleus-nucleus collisions:
 - Electromagnetic probes: additional constraint on evolution
 - Jets: interaction of colored particles with medium
- Proton-nucleus collisions more interesting than anybody believed when LHC started!
 - Understand “cold” nuclear matter effects for heavy quarks, high p_T particles, electromagnetic probes
 - Onset of collective behavior in ever smaller systems