Study of QCD radiation in top quark pair events.

4th annual Large Hadron Collider Physics conference. June 16, 2016

> Christoph Eckardt On behalf of the ATLAS and CMS collaborations

- Most top events have additional jets at LHC energies
- Need to have good background estimation of tt with additional jets
- Improve modelling of QCD radiation in generators and reduce MC modelling uncertainties
 - Tuning of fixed order NLO calculations to ISR/FSR
 - Matching and merging in modern generators (additional jets are generated @ NLO)

Recent results.

Jet multiplicity measurements:

- ℓ+jets @ 13 TeV CMS-PAS-TOP-16-008
- Dilepton @ 13 TeV ATLAS-CONF-2015-065
- Dilepton @ 13 TeV CMS-PAS-TOP-16-011
- eµ @ 8 TeV paper in preparation
 - Dilepton @ 8 TeV CMS-PAS-TOP-12-041

Gap fraction measurements:

- $e\mu$ @ 8 TeV ATLAS-TOPQ-2015-04
- Dilepton @ 8 TeV CMS-PAS-TOP-12-041

tt + heavy flavor:

- Dilepton @ 8 TeV CMS-PAS-TOP-12-041
- ℓ+jets @ 8 TeV CMS-PAS-TOP-13-016
- ℓ+jets @ 8 TeV Eur.Phys.J.C(2016)76:11
- ℓ+jets @ 8 TeV Phys.Lett.B746(2015)132 (not covered)

Other:

- tt̄ + X (μ+jets) @ 13 TeV CMS-PAS-TOP-15-017 (not covered)
- ▶ Jet Pull Angle (ℓ+jets) @ 8 TeV PLB 750 (2015) 475-493 (not covered)
 - Comparisons of theory predictions @ 8 TeV CMS-PAS-TOP-15-011 (not covered)

Measurement strategies.

Fiducial phase space

- Matches closely the phase space of the detector
- Detector response corrections (resolution & efficiency)

Particle level

- Based on final state particles at generator level
- Electrons and muons: prompt, origin not from a hadron decay
- Neutrinos: origin not from a hadron decay
- Jets: Clustering of all stable final state particles
- b-jets: Matching jets to b-hadrons (ghost matching)
- Smaller model dependence and no extrapolation needed compared to full phase space and parton level

- Differential cross-section as a function of jet multiplicity unfolded at particle level
- Sensitive to the production mechanism of additional jets
- Probing p_T dependence of the hard emission via different p_T thresholds
- Anti-k_T jets with a radius of 0.4 are used (except CMS @ 8 TeV → R=0.5)

Jet multiplicity at 13 TeV.

dilepton, \geq 2 b-jets

- ▶ Different versions & tunes for predictions → Need to have comparable results
- Large uncertainties 5-40% (jet energy scale (JES) is dominant part)
- ► Add. jets from parton shower → Tuning is important

Jet multiplicity at 13 TeV vs. 8 TeV.

- ▶ η region: $|\eta| < 2.5$ $|\eta| < 4.5$
- ▶ 13 TeV measurement uses Powheg+Pythia6 with $h_{damp} = m_t$

- Uncertainties up to 20% @ 8 TeV (Data statistics and JES)
- Consistent results with 8 TeV measurement
- Powheg with Pythia8 or with Herwig++ perform reasonably well at both \sqrt{s}

Jet multiplicity at 13 TeV.

- Comparison to lepton+jets analysis at 13 TeV
- Differential cross section:

Absolute

Normalized

Similar trend towards too many predicted additional jets in both analyses

Gap fraction measurement.

Definition

$$f(p_T) = \frac{N(p_T)}{N_{\text{total}}}$$

- N(p_T): number of events with no additional jet above a p_T threshold within the (pseudo-)rapidity interval (veto region)
- N_{total}: total number of selected events
- Sensitive to the leading p_T emission accompanying the tt system
- Inclusive measurement, which allows an insight to the parton showering
- Measured for different veto regions (e.g. |y| < 0.8)

Gap fraction at 8 TeV.

dilepton, \geq 2 b-jets

- Overall nice consistency between results
- Up to 1.5% uncertainty (again JES is dominant)
- Generator agreement is comparable (even with different tunes)

Christoph Eckardt (DESY) | Study of QCD radiation in top quark pair events | 9/12

Measurement of tt + heavy flavor.

- Measurement of ratio tt+bb/tt+jj at parton level
 - Irreducible background for ttH (H \rightarrow bb) analysis \Rightarrow Constrain g \rightarrow bb fragmentation
- Jet flavor at generator level defined by:
 - Flavor of leading quark (hardB) \rightarrow parton level
 - ▶ Presence of a B-hadron in the list of jet constituents (hadronB) \rightarrow particle level
- Caveat: different phase spaces used \rightarrow Only separate comparisons

- Uncertainties are statistics dominated
- Systematics mostly from b-tagging and JES Christoph Eckardt (DESY) | Sti

 σ_{ttbb}^{fid} / σ_{ttii}^{fid} [%]

Fiducial cross section of $t\bar{t} + b(b)$.

- Test of NLO QCD calculations of tt + b(b)
- QCD-only results: ttV/H prediction is subtracted (simulation)
- aMC@NLO with two different functional forms for renormalization & factorization scales
- ► Pythia8 calculations with three different options for the g→bb̄ splitting

- Consistent results between 8 and 13 TeV measurements
- Many different kinematic regions related to QCD radiation in top pair events have been measured
- Results show discrimination power between MC models and tuning parameters
 - \rightarrow Important input for top pair modelling at 13 TeV
- Need to move to NLO generators for higher jet multiplicities, where the emission of additional jets is not dependent on the tuning

Backup.

$p_{\rm T}$ of additional b-jets.

