

SPIN POLARISATION IN TOP PAIR WITH DI-GAMMA PRODUCTION AT NLO+PS

Rikkert Frederix Technische Universität München

In collaboration with: H. v. Deurzen, V. Hirschi, G. luisoni, P. Mastrolia and G. Ossola Eur.Phys.J. C76 (2016) no.4, 221

LHCP2016, Lund, Sweden, Jun. 13-18, 2016

MOTIVATION

- ✦ Interface between MadGraph5_aMC@NLO and GoSam
- ✦ Application to
 - O signal: top pair + Higgs, with Higgs decaying to di-photon
 - irreducible, continuum background: top pair di-photon production

MADGRAPH5_AMC@NLO

[Alwall, RF, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

- Modular structure:
 - Use MadGraph5 for LO and steering
 - MadFKS for factoring out Infrared singularities
 - MadLoop for the virtual corrections
 - aMC@NLO for matching to the parton shower

\$./bin/mg5_aMC

MG5_aMC> generate $p p > t t \sim a a [QCD]$

- MG5_aMC> output my_NL0_ttaa_process
- MG5 aMC> launch

MadGraph5_aMC@NL(

http://amcatnlo.cern.ch

aMC@NLO

MadGraph5

MadFKS

MadLoop

MADGRAPH5_AMC@NLO

[Alwall, RF, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

- Modular structure:
 - Use MadGraph5 for LO and steering
 - MadFKS for factoring out Infrared singularities
 - MadLoop for the virtual corrections
 - aMC@NLO for matching to the parton shower

\$./bin/mg5_aMC

MG5_aMC> generate p p > t t~ a a [QCD]

- MG5_aMC> output my_NLO_ttaa_process
- MG5 aMC> launch

MadGraph5_aMC@NL(

MadGraph5

http://amcatnlo.cern.ch

MADGRAPH5_AMC@NLO

[Alwall, RF, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

- ✦ Modular structure:
 - Use MadGraph5 for LO and steering
 - MadFKS for factoring out Infrared singularities
 - MadLoop for the virtual corrections
 - aMC@NLO for matching to the parton shower

\$./bin/mg5_aMC

MG5 aMC> generate p p > t t~ a a [QCD]

MG5 aMC> output my NLO ttaa process

MG5 aMC> launch

MadGraph5_aMC@NL0

MadGraph5

GOSAM

http://gosam.hepforge.org

- ✦ Each tool has its own strengths and weaknesses
 - Availability
 - Speed
 - Stability
- Now possible to switch seamlessly between MadLoop and GoSam within MadGraph5_aMC@NLO
- Main difference between GoSam and MadLoop is that the former generates and computes analytic expressions for the integrands, while the latter uses a purely numerical approach

[Cullen, Van Deurzen, Greiner, Heinrich, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, von Soden-Fraunhofen, Tramontano]

BINOTH-LESHOUCHES INTERFACE

 The Binoth-Les Houches interface is used for the interplay between MG5_aMC and GoSam

#OLE_order written by MadGraph5_aMC@NLO		<pre># vim: syntax=olp #@OLP CoSam 2 0 0</pre>	
MatrixElementSquareType CHaveraged		#@IgnoreUnknown True	
CorrectionType	QCD	#@IgnoreCase False	
IRregularisation	CDR	#@SyntaxExtensions	
AlphasPower	2	MatrixElementSquareType CHaveraged OK	
AlphaPower	2	CorrectionType QCD OK	
NJetSymmetrizeFinal	Yes	IRregularisation CDR OK	
ModelFile	./param_card.dat	AlphasPower 2 OK	
Parameters	alpha_s	AlphaPower 2 OK	
		NJetSymmetrizeFinal Yes OK #Ignored by OLP	
		ModelFile ./param_card.dat OK	
# process		Parameters alpha_s OK	
21 21 -> 22 22 6 -6		21 21 -> 22 22 6 -6 1 2	
2 -2 -> 22 22 6 -6		2 -2 -> 22 22 6 -6 1 0	
1 -1 -> 22 22 6 -6		1 -1 -> 22 22 6 -6 1 3	
-2 2 -> 22 22 6 -6		-2 2 -> 22 22 6 -6 1 1	
-1 1 -> 22 22 6 -6		-1 1 -> 22 22 6 -6 1 4	

Order file

Generated by MG5_aMC and passed to GoSam. Contains information on processes that GoSam should generate

Contract file

GoSam returns if it understand the order file and assigns labels (to be used at run time) to each of the subprocesses

VALIDATION

- Many processes tested with the interface: at single phase-space points, total rates and diff. distributions
- For example top pairs + di-photon:

 $\sigma_{t\bar{t}\gamma\gamma}, \sqrt{s} = 8 \text{ TeV}$ MG5_AMC + MADLOOP
 MG5_AMC + GoSAM

 LO [pb]
 $1.0241 \pm 5.50 \cdot 10^{-4}$

 NLO [pb]
 $1.3507 \pm 5.85 \cdot 10^{-3}$ $1.3432 \pm 5.16 \cdot 10^{-3}$

APPLICATION

- As an application, we studied top pair production in association with a diphoton pair
 - Both signal (resonant Higgs->di-photon) and background (continuum)
 - Include (semi-)leptonic top decays using MadSpin: keeps spin correlations
 - Events are showered with Pythia 8
- ✦ Selection cuts:
 - **O** 2 isolated photons with $p_{T,\gamma} > 20 \text{ GeV}, |\eta_{\gamma}| < 2.5, 123 \text{ GeV} < m_{\gamma\gamma} < 129 \text{ GeV}$
 - **O** 2 charged leptons $p_{T,l^{\pm}} > 10 \text{ GeV}, |\eta_{l^{\pm}}| < 2.7$
 - **O** 2 bottom jets (100% b-tagging efficiency) $\Delta R = 0.4$, $p_{T,j} > 20$ GeV, $|\eta_j| < 4.7$
 - Use MC truth to select the "right" photons/leptons/b-jets and reconstruct the top quarks

FIDUCIAL CROSS SECTION

$\sqrt{s} = 13 \text{ TeV}$	$pp \rightarrow t\bar{t}H, \ H \rightarrow \gamma\gamma$	$pp ightarrow t \bar{t} \gamma \gamma$
LO [pb]	$8.84(2) \cdot 10^{-7} \begin{array}{c} +27\% \\ -20\% \end{array} \begin{array}{c} +10\% \\ -11\% \end{array}$	$1.442(2) \cdot 10^{-7} {}^{+25\%}_{-18\%} {}^{+10\%}_{-12\%}$
NLO [pb]	$11.77(5) \cdot 10^{-7} {}^{+6\%}_{-8\%} {}^{+11\%}_{-12\%}$	$2.175(7) \cdot 10^{-7} {}^{+10\%}_{-10\%} {}^{+10\%}_{-11\%}$
K-factor	1.33(1)	1.51(1)

- ◆ With these simple cuts, signal is larger than background (but very tiny)
- ✦ Getting total cross section will already be very challenging
 - nevertheless, I'll focus in this talk on diff. distributions, which is not something that will be measured in the near future, but shows some interesting theoretical features

- Use leptons (from the top decays) as spin-analyser
- frame-1: the Lorentz boosts to bring t and \bar{t} separately at rest are defined with respect to the $t\bar{t}$ -pair center-of-mass frame,
- frame-2: the Lorentz boosts to bring t and \overline{t} separately at rest are defined with respect to the labframe.

- New interface available between MadGraph5_aMC@NLO and GoSam
 - Allows for easy comparisons between MadLoop and GoSam
 - Availability
 - ◆ Speed
 - ♦ Stability
- Application to top pair production in association with a di-photon pair: Higgs signal versus continuum backgrounds

• interesting features show

- ◆ large top anti-top asymmetry
- spin correlations; largely independent from the frame