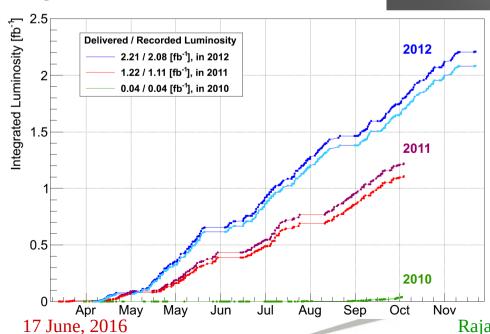
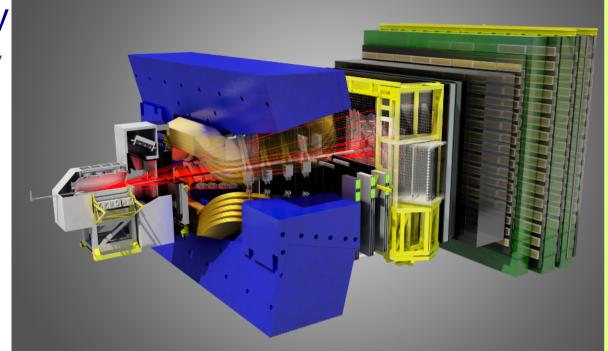


Searches for heavy neutrinos, LFV

Introduction

- LHCb for rare searches
- Search for LFV in D⁰ → e[±]µ[∓]
- Search for LFV in τ^- → $\mu^-\mu^+\mu^-$
- **Search** for Majorana neutrinos in B⁻ → π ⁺ μ ⁻ μ ⁻
- Summary



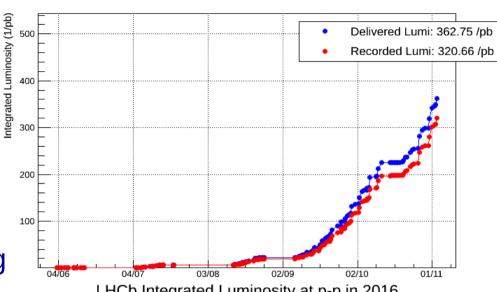

LHCb detector

LHCb

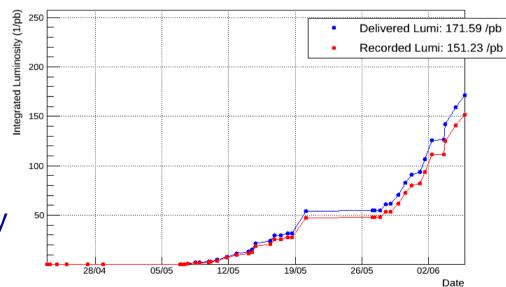
LHCb as flavour factory

- opp collisions at 7, 8 TeV
- Full spectrum of B hadrons
 - B_0 , B_{s_0} , B_+ , B_c , L_{b_0} , ...
 - And c hadrons too
- $\bigcirc \mathcal{L} \sim 10^{32} 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- $\bigcirc \int \mathcal{L} = 3.0 \text{ fb}^{-1} \text{ in Run I}$

- Single arm forward spectrometer
- Momentum resolution :
 - \circ $\delta p/p \sim 0.5 1\%$
- IP resolution ~ 20µm
 - Excellent pid, trigger, ...


Raja Nandakumar

LHCb in Run II


LHCP

- p-p collisions at 13 TeV
- $\sim \mathcal{L} \sim 10^{32} 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - Luminosity levelling
 - Average Interactions / bunch crossing ~ 1
- Aim for 8 pb⁻¹
- Precision measurements using high statistics
- Redesigned trigger
 - Automatised calibration and alignment
 - Offline rate of ~12.5 Khz
 - 600 MB/s to storage
- Note results presented today use only Run I data

LHCb Integrated Luminosity at p-p in 2016

Motivation

Neutrino oscillations

- Only possible with massive neutrinos
 - Needs SM extensions
 - e.g. see-saw mechanism, with heavy neutrinos

■ LFV

- Suppressed in SM (BF ≤ 10⁻⁴⁰)
- Contributions from ν oscillations

Interesting ground for studies

- Difficult to detect ν directly
- Test for properties indirectly using precision studies
- Modifications in rates from SM extensions

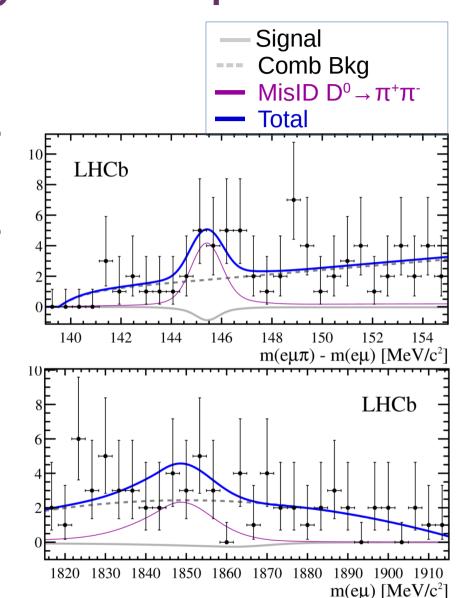
$LFV\ decay\ D^0 \to e^\pm \mu^\mp$

- Forbidden in SM
 - 2.6 x 10⁻⁷ (90%CL) from Belle
 - PRD 81 (2010) 091102
- Possible for various SM extensions
 - BR ~ 10-6 for R-parity violating SUSY models
 - ~ 10-8 for some leptoquark models
 - ~ 10-14 for SM with extra fermions

$LFV\ decay\ D^0 \to e^\pm \mu^\mp$

Candidates / $[0.27 \text{ MeV/c}^2]$

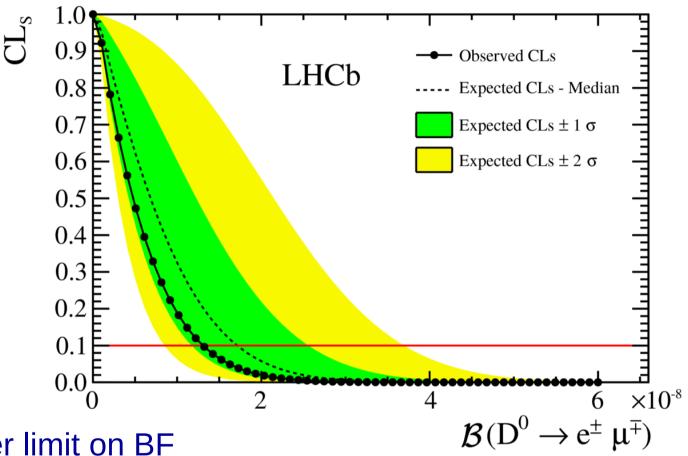
Candidates / $[1.7~{
m MeV/c}^2]$


Analysis using Run I data

- □ 3 fb⁻¹, √s = 7–8 TeV
- \bigcirc Use D₀ from D*+ \rightarrow D₀ π +
- Normalisation channel :

$$D^0 \to K^- \pi^+$$

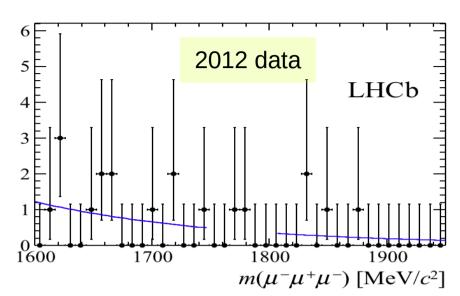
Standard LHCb blind analysis

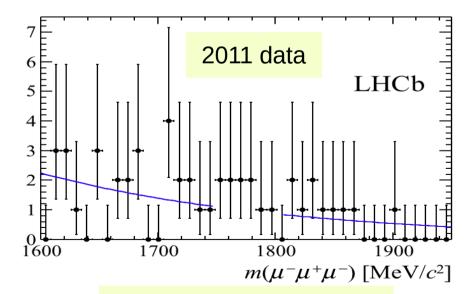

- Pre-selection + MVA
- Evaluate backgrounds
 - $\pi^+\pi^-$, $\pi^-e^+\nu_e$, $\pi^-\mu^+\nu_\mu$
- Understand systematics
- Unblind and extract fit values
 - Fit 3 bins of BDT output
 - 2D fit for Δm, m
- Plot : Most signal-like BDT bin

LFV decay $D^0 \rightarrow e^{\pm}\mu^{\mp}$

Upper limit on BF

- 1.3 x 10-8 (90%)
- 1.6 x 10-8 (95%)
- Dominated by statistics




LFV decay $\tau^- \to \mu^- \mu^+ \mu^-$

Candidates / $(8.75 \text{ MeV}/c^2)$

MVA response bin with highest signal prob.

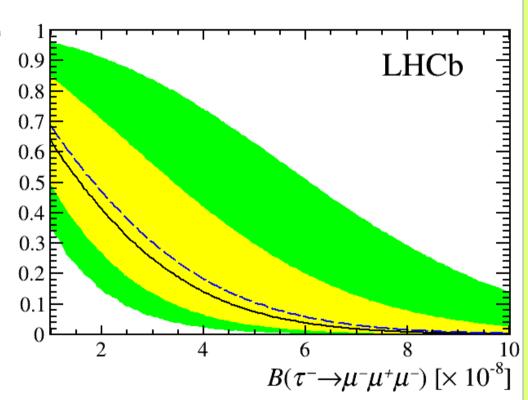
Large inclusive τ cross—section

- From decays of c, b hadrons
- ~ 85µb at 7 TeV
- Analysis based on Run I data
 - \circ 3 fb⁻¹, $\sqrt{s} = 7-8$ TeV
- Typical LHCb selection
 - \circ Three μ tracks which make up a τ
 - Multiple MVAs
 - Separate optimizations for 2011 and 2012 data

Normalised to

 $\circlearrowleft D_s^- \to \phi(\mu^+\mu^-)\pi^-$

LFV decay $\tau^- \to \mu^- \mu^+ \mu^-$

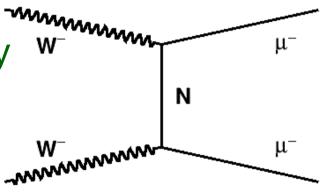

No significant excess over background found

Measured

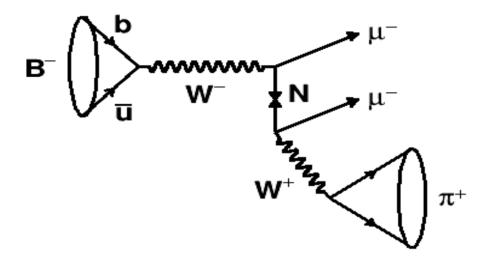
- BF $(\tau^- \to \mu^- \mu^+ \mu^-)$ < 4.6 (5.6) × 10⁻⁸
- 90 (95) % CL

Expected

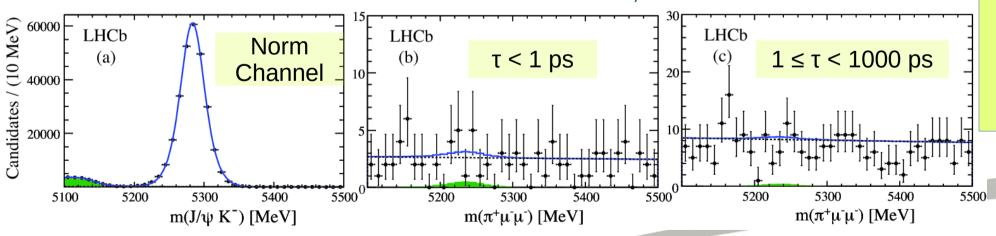
○ BF $(\tau^- \to \mu^- \mu^+ \mu^-)$ < 5.0 (6.1) × 10⁻⁸



Majorana neutrinos in LHCb


- Neutrino masses from see-saw mechanism
 - Likely mass has Majorana component
 - \bigcirc Heavy (m \gg eV), unstable
- Majorana neutrinos
 - Neutrino-less double beta decay
 - Can be probed in LHC
 - Pairs of identical leptons
 - LFV, LNV

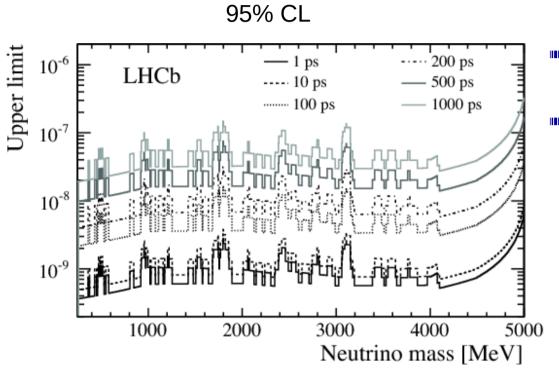
Majorana neutrinos in $B^- \to \pi^+ \mu^- \mu^-$



- Search for neutrinos with
 - \circ 250 MeV < \mathcal{M} < 5000 MeV
 - Two samples :
 - τ < 1 ps
 - $1 \le \tau < 1000 \text{ ps}$
- Normalise to

 $B^- \rightarrow J/\psi \ K^- \ where \ J/\psi \rightarrow \mu^+\mu^-$

Analysis using Run I data


 \circ 3 fb⁻¹, $\sqrt{s} = 7-8 \text{ TeV}$

Majorana neutrinos in $B^- \to \pi^+ \mu^- \mu^-$

- No signal found
- BF(B⁻ → π + μ - μ -) < 4 x 10-9
 - Also quote limits on coupling of 4th generation majorana neutrino to muons

Summary

- LHCb is an excellent b and c factory
- Various searches for very rare decays performed
 - No signal so far
 - Various limits improved by ~x10
 - Starting to constrain some models
 - Still far from systematic wall
 - J. Prisciandaro talk on LU/LFV tests
- Run II ongoing
 - Improved trigger system
 - L. Grillo talk on LHCb trigger and alignment
 - \circ Larger data set than proportional to $\mathcal L$
- Look forward to exciting times
 - A. Cardini talk on LHCb Upgrade
 - More analyses in future from LHCb for LFV / LNV tests

