

Diboson and Multiboson Results with CMS

Nate Woods

University of Wisconsin—Madison

On behalf of the CMS Collaboration

Multiboson Physics

For similar ATLAS results, see talk by S. Barnes

- Multi-V (V ∈ Z,W[±],γ) production is an important probe of SM electroweak (EWK) gauge boson interactions
 - Sensitive to deviations from the SM
 - Is the Higgs we found enough to preserve unitarity?
 - Multi-V final states are the natural first search channels for anomalous gauge couplings (aTGCs and aQGCs)
- 2015 datasets permit measurements of some 13 TeV inclusive cross sections
 - NNLO predictions now available for many processes
 - Today: W⁺W⁻, W[±]Z and ZZ
- Run-I datasets allowed measurements of all diboson and several triboson states
 - Today: EWK Zγ+jets and Wγ+jets; Zγγ and Wγγ; γγ→WW

15 June 2016 Nate Woods ≠ LHCP 2016

W⁺W⁻ at 13 TeV

- Good channel for studies of charged gauge boson couplings
- Primary irreducible background to important Higgs decay
- evµν decay channel avoids large Drell-Yan background
- Large top-quark backgrounds suppressed with b-jet veto and $N_{jets} < 2$ cut
- $E_T^{miss} > 30$ GeV, $\overrightarrow{E}_T^{miss} \cdot \overrightarrow{p}_T^{\ell_1} > 20$ GeV

CMS-PAS-SMP-16-006

Brand new!

W⁺W⁻ at 13 TeV

- Jet veto makes efficiency sensitive to higher-order QCD corrections
 - POWHEG signal sample reweighted to results of NNLL p_T^{WW} resummation
- Also sensitive to underlying event and parton shower modeling
- $\sigma_{W^+W^-} = 115.2 \pm 5.8(stat)$ $\pm 5.7 (syst) \pm 6.4(theo) \pm 3.6(lumi) pb$
- NNLO prediction: 120.3 \pm 3.6 pb

CMS-PAS-SMP-16-006

WZ at 13 TeV

CMS-PAS-SMP-16-002

- WZ \rightarrow 3 $\ell\nu$ ($\ell \in e, \mu$) signal is clean enough to measure cross section with 2015 dataset despite modest cross section
- Good channel to investigate charged TGCs with more data
- NNLO predictions recently produced by Grazzini et al.

WZ at 13 TeV

• Total cross section found for $60 < m_Z < 120 \ { m GeV}$

•
$$\sigma_{WZ} = 40.9 \pm 3.4(\text{stat})^{+3.1}_{-3.3}(\text{syst})$$

 $\pm 0.4(\text{theo}) \pm 1.3(\text{lumi}) \text{ pb}$

- Acceptance $45.0 \pm 0.4\%$ (POWHEG)
- Branching ratios from PDG
- MCFM NLO: $42.6_{-0.8}^{+1.6}$ pb
- New since this plot: NNLO from Grazzini et al. (arXiv:1604.08576)
 - 50.0^{+1.1}_{-1.0} pb

CMS-PAS-SMP-16-002

More data needed to exceed 2012 precision

ZZ at 13 TeV

CMS-PAS-SMP-16-001

- $ZZ\rightarrow 4\ell \ (\ell \in e, \mu)$ virtually zero-background
- Only irreducible background to Higgs "golden channel"
- NNLO predictions available
 - Gluon-fusion "box diagrams" have large effect
- Extend to low mass for Z→4ℓ branching ratio measurement
- Full spectrum (further restricted for cross section and branching ratio measurements):
 - $40 < m_{Z_1} < 120 \text{ GeV}$ $(\ell^+\ell^- \text{ closer to nominal } m_Z)$
 - $4 < m_{Z_2} < 120 \text{ GeV}$

15 June 2016 Nate Woods \Rightarrow LHCP 2016

Z→4ℓ Branching Fraction

- Measure Z cross section by restricting phase space to $80 < m_{4\ell} < 100 \ {
 m GeV}$
 - 4% correction for non-resonant γ*γ*
- We already know the Z cross section; natural to interpret as branching fraction

$$\frac{\mathcal{B}(\mathbf{Z} \to 4\ell)}{\mathcal{B}(\mathbf{Z} \to \ell\ell)} = \frac{\sigma(pp \to \mathbf{Z} \to 4\ell)}{\sigma(pp \to \mathbf{Z} \to \ell\ell) \cdot \mathcal{C}_{80-100}^{60-120}}$$

CMS-PAS-SMP-16-001

- $\sigma(pp \to Z \to 4\ell)$ measured here, $\sigma(pp \to Z \to \ell\ell)$ from FEWZ
- C_{80-100}^{60-120} corrects for different mass window
- $\mathcal{B}(Z \to 4\ell) = 4.9^{+0.8}_{-0.7}(\text{stat})^{+0.3}_{-0.2}(\text{syst})^{+0.2}_{-0.1}(\text{theo}) \pm 0.1(\text{lumi}) \times 10^{-6}$

• Theory (MCFM or MadGraph5_aMC@NLO): 4.6×10^{-6}

ZZ Cross Section at 13 TeV

CMS-PAS-SMP-16-001

- Require both Zs on-shell (60-120 GeV)
- $\sigma_{ZZ} = 14.6^{+1.9}_{-1.8}(\text{stat})^{+0.5}_{-0.3}(\text{syst}) \pm 0.2(\text{theo}) \pm 0.4(\text{lumi}) \text{ pb}$
 - MCFM NLO+gg: $15.0^{+0.8}_{-0.6}$ pb
 - New NNLO from Grazzini et al.:

 $16.2^{+0.6}_{-0.4}$ pb

Results already approaching precision from 2012 despite smaller dataset

(qd)

dd

EWK $Z\gamma+2jets$ and $W\gamma+2jets$ at 8 TeV

CMS-PAS-SMP-14-018 CMS-PAS-SMP-14-011

- Vector Boson Scattering (VBS) processes at $\mathcal{O}(lpha_{EWK}^5lpha_s^0)$ probe multi-V interactions
- Distinctive 2-jet topology
 - Cuts on m_{ij} and $\Delta\eta_{ij}$ select VBS phase space
 - Background from ZV with $V \rightarrow jj$ also removed by m_{jj} cut

EWK Zγ+2jets at 8 TeV

Selection

- $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$, $70 < m_{\ell\ell} < 110 \text{ GeV}$
- $m_{jj} > 400 \text{ GeV}$, $\Delta \eta_{jj} > 1.6$, $\Delta \phi_{Z\gamma,jj} > 2.0$, $\left| y_{Z\gamma} \frac{(y_{j_1} + y_{j_2})}{2} \right| < 1.2$
- Evidence of VBS: significance of 3.0σ over background (2.1σ expected)
- EWK cross section:

1.
$$86^{+0.89}_{-0.75}(\text{stat})^{+0.41}_{-0.27}(\text{syst}) \pm 0.05(\text{lumi}) \text{ fb}^{\frac{1}{2}}$$

- MadGraph LO:
 - 1.26 ± 0.11 (scale) ± 0.05 (PDF) fb
- Most stringent limits to date on several dimension-8 aQGC parameters

CMS-PAS-SMP-14-018

15 June 2016 Nate Woods

→ LHCP 201€

M
Z₇ (GeV)

EWK Wγ+2jets at 8 TeV

CMS-PAS-SMP-14-011

- Selection:
 - W \rightarrow ev or $\mu\nu$, $E_T^{miss} > 35 \text{ GeV}$
 - $m_{jj} > 700 \text{ GeV}$, $\Delta \eta_{jj} > 1.6$, $\Delta \phi_{W\gamma,jj} > 2.6$, $\left| y_{W\gamma} \frac{(y_{j_1} + y_{j_2})}{2} \right| < 0.6$
- Excess consistent with EWK production with significance of 2.7σ (1.5 σ expected)
- EWK-only fiducial cross section: $10.8 \pm 4.1(stat) \pm 3.4(syst) \pm 0.3(lumi)$ fb $\frac{3}{2}$
- MadGraph NLO: 6.1 \pm 1.2(scale) \pm 0.2(PDF) fb
- Most stringent limits to date on several dimension-8 aQGC parameters

Zγγ at 8 TeV

CMS-PAS-SMP-15-008

 Unique view of aQGC: 3/4 bosons in potential q' vertex identified and measured well

Observation: 5.9σ above background

• $\sigma_{Z\gamma\gamma}^{\mathrm{fid}} \times \mathcal{B}(Z \to \ell\ell) = 12.7 \pm 1.4(\mathrm{stat})$ $\pm 1.8(\mathrm{syst}) \pm 0.3(\mathrm{lumi})$ fb

- MadGraph NLO: 12.95 \pm 1.47 fb
- Largest systematic is jet→photon misidentification rate
- Also used to obtain aQGC limits

15 June 2016 Nate Woods ≠ LHCP 2016

$W\gamma\gamma$ at 8 TeV

CMS-PAS-SMP-15-008

- Photons may be ISR/FSR, TGC or QGC
- Significance over background: 2.4 σ $\pm 2.3(\text{syst}) \pm 0.2(\text{lumi})$ fb
 - MadGraph NLO: 4.76 ± 0.53 fb
- As for Zγγ, largest systematic is from photon fake rate

Nate Woods LHCP 2016 15 June 2016

→W+W⁻ at 8 TeV

CMS-PAS-FSQ-13-008 Submitted to JHEP

- Useful to examine gauge couplings with initial and final states fully specified
 - Direct sensitivity to γγWW quartic coupling
- Idea: use LHC as a photon-photon collider
- Protons scatter elastically or break up, but either way are too forward to see
 - Signature: coplanar $e^{\pm}\mu^{\mp}$ from vertex with no other charged tracks
- $\gamma\gamma \to \ell^+\ell^-$ events used to understand efficiency, background, and nonperturbative effects

15 June 2016 **Nate Woods LHCP 2016**

γγ→W⁺W⁻ at 8 TeV

- Combination of 7 and 8 TeV shows evidence of process with significance of 3.4σ (2.8σ expected)
- $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 11.9^{+5.6}_{-4.5} \text{ fb}$
- MadGraph: 6.9 \pm 0.6 fb
- Primary uncertainties are statistics and effect of proton dissociation
- Most stringent limits to date on several dimension-6 and dimension-8 aQGC parameters

CMS-PAS-FSQ-13-008 Submitted to JHEP

15 June 2016 Nate Woods \neq LHCP 201 $P_{T}^{(\mu e)}[GeV]$

17

8 TeV Cross Section Summary

aQGC Limits—Longitudinal +

Transverse

Limits on longitudinal terms in backup

aQGC Limits @95% C.L. [TeV-4]

CMS VV Cross Section Summary

15 June 2016 Nate Woods ≠ LHCP 2016

Summary

- Multiboson measurements at CMS continue to shed light on the electroweak sector of the Standard Model
- 13 TeV WW, WZ, and ZZ cross sections are measured and compared to NNLO predictions
- Z→4ℓ branching ratio is measured in 13 TeV four-lepton data
- Evidence of 8 TeV EWK $Z\gamma+2$ jets production seen with significance of 3.0 σ ; search for EWK $W\gamma+2$ jets performed
- 8 TeV Zγγ observed with significance of 5.9σ; Wγγ search performed
- Evidence of γγ→WW seen at 8 TeV with significance of 3.4σ
- Run-I results are used to place stringent new limits on anomalous quartic gauge couplings

15 June 2016 Nate Woods ≠ LHCP 2016

Backup

More on WZ

- $76 < m_{\ell\ell} < 106 \; {
 m GeV}, \, E_T^{miss} > 30 \; {
 m GeV}$
- Background control
 - Veto events with extra leptons or btagged jets with $|\eta| < 2.4$
 - Derive jet→lepton misidentification probability in dijet control region
 - Apply mis-ID rate to control regions where 1,2, or 3 leptons fail ID or isolation
- Largest systematic is background estimation, ~6% on the final cross section

CMS-PAS-SMP-16-002

4l Production Mechanisms

CMS-PAS-SMP-16-001

- 4ℓ production mechanisms fall in distinct regions of dilepton mass space
 - ZZ: both on-shell
 - Zγ*, H→ZZ*: one on-shell, one at lower mass
 - $Z\rightarrow 4\ell$: lepton from Z radiates γ^* , both lepton pairs low-mass
- Small backgrounds estimated with lepton mis-ID rate applied to Z+ll control regions where one or both l fail ID or isolation

15 June 2016 Nate Woods

⇒ LHCP 2016 2

More on EWK Zγ+2jets

CMS-PAS-SMP-14-018

- Backgrounds
 - $Z\gamma+QCD$ jets shape from Monte Carlo, normalization from low- m_{ij} control region in data
 - Z+fake γ estimated from data with fits to photon shower shape variables
- Limits on EWK cross section shown here

- EWK+QCD, $m_{ij} > 800$ GeV: 4.5 σ observed (4.3 σ expected)
 - $1.00 \pm 0.43(\text{stat}) \pm 0.26(\text{syst}) \pm 0.03(\text{lumi})$ fb
 - MadGraph LO: 0.78 ± 0.09 (scale) ± 0.02 (PDF) fb

15 June 2016 Nate Woods ⇒ LHCP 2016

More on $W\gamma\gamma \& Z\gamma\gamma$

- Ζγγ: Zightarrowe $^+$ e $^-$ or $\mu^+\mu^-$, $m_{\ell\ell}>40~{
 m GeV}$
- Wγγ: W \rightarrow μν, $m_T(\mu, E_T^{miss}) > 40 \text{ GeV}$
- Background from jets faking photons large and difficult to estimate
 - Cross-contamination between events with zero, one, and two fake photons estimated with a template normalization method to apply fake rates to data events
 - Correlations between pairs of fakes require use of a separate V+jets sideband

CMS-PAS-SMP-15-008

Simulation and data in dijet control region (for background validation)

$Z(\nu\nu)\gamma$

CMS-PAS-SMP-14-019

Submitted to PLB

- Invisible Z decays have a larger branching ratio and acceptance than leptonic decays, and can be used to set more stringent limits on neutral aTGCs
- Require $E_T^{\gamma} > 145$ GeV, $E_T^{miss} > 140$ GeV, $\Delta \phi(\gamma, E_T^{miss}) > 2$
- Significant non-collision backgrounds in addition to events with lost leptons or fake photons and E_T^{miss}

27

$Z(\nu\nu)\gamma$

- Cross section is measured for $E_T^{\gamma} > 145~GeV$, $|\eta^{\gamma}| < 1.44$
- $\sigma_{Z\gamma} \times \mathcal{B}(Z \rightarrow \nu\nu) = 52.7 \pm 2.1(\text{stat}) \pm 6.4(\text{syst}) \pm 1.4(\text{lumi}) \text{ fb}$
 - MCFM NLO: 40.7 ± 4.9 fb
 - Grazzini et al. NNLO: $50.0^{+2.4}_{-2.2}$ fb
- Limits set on aTGC parameters governing ZZγ and Zγγ vertices are the most stringent to date

CMS-PAS-SMP-14-019 Submitted to PLB

Anomalous Quartic Gauge Coupling Details

- Treat SM as a low-energy effective theory and add terms with new dimension-8 operators to represent new physics
 - Lowest dimension that gives aQGC without aTGC
- Parameterize search in coefficients of these new terms
- Non-unitary without model-dependent form factor or cutoff

	Couplings modified									
	Terms	WWWW	WWZZ	ZZZZ	WWZγ	WWγγ	ZZZγ	ZZγγ	Ζγγγ	γγγγ
Longitudinal + transverse	$f_{M0}, f_{M1}, f_{M6}, f_{M7}$	√	√	✓	√	✓	✓	✓		
	$f_{M2}, f_{M3}, f_{M4}, f_{M5}$		√	✓	✓	✓	✓	✓		
Transverse	f_{T0}, f_{T1}, f_{T2}	✓	√	✓	√	√	✓	✓	1	✓
	f_{T5}, f_{T6}, f_{T7}		√	✓	√	✓	✓	✓	1	✓
	f_{T8}, f_{T9}			✓			✓	✓	✓	✓

15 June 2016 Nate Woods ≠ LHCP 2016 Table modified from here

aQGC Limits—Transverse Only

