VV precision predictions - Vector boson pair production at hadron colliders at NNLO QCD

Stefan Kallweit ${ }^{1}$

based on work with: F. Cascioli ${ }^{\text {b }}$, T. Gehrmann ${ }^{\text {bc }}$, M. Grazzini ${ }^{\text {a-h }}$, P. Maierhöfer ${ }^{\text {bc }}$, A. v. Manteuffel ${ }^{\text {bc }}$, S. Pozzorini ${ }^{\text {bch }}$, D. Rathlev ${ }^{\text {a-h }}$, L. Tancredi ${ }^{\text {bc }}$, A. Torre ${ }^{\text {a }}$, E. Weihs ${ }^{\text {b }}$, M. Wiesemann ${ }^{\text {egh }}$
${ }^{\mathrm{h}}$ arXiv:1605.02716 [hep-ph] g^{g} arXiv:1604.08576 [hep-ph]
${ }^{\text {f }}$ Phys.Lett. B750 (2015) 407-410 [arXiv:1507.06257 [hep-ph]]
e JHEP 1508 (2015) 154 [arXiv:1507.02565 [hep-ph]]
d JHEP 1507 (2015) 085 [arXiv:1504.01330 [hep-ph]]
${ }^{c}$ Phys.Rev.Lett. 113 (2014) 21, 212001 [arXiv:1408.5243 [hep-ph]]
b Phys.Lett. B735 (2014) 311-313 [arXiv:1405.2219 [hep-ph]]
${ }^{\text {a }}$ Phys.Lett. B731 (2014) 204-207 [arXiv:1309.7000 [hep-ph]]
${ }^{1}$ University of Mainz
Fourth Annual Large Hadron Collider Physics Conference (LHCP2016)
Lund, Sweden, June 13 - 18, 2016

Outline

(1) Introduction

- Motivation for NNLO QCD accuracy in VV production
(2) Calculation of NNLO QCD cross sections in the MATRIX framework
- The Matrix framework in a nutshell
(3) Numerical results at NNLO QCD
- NNLO QCD results for $\mathrm{pp} \rightarrow \mathrm{W}^{ \pm} \mathrm{Z}(\rightarrow 3 \ell \nu)+\mathrm{X}$
- NNLO QCD results for $\mathrm{pp}\left(\rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\right) \rightarrow 2 \ell 2 \nu+\mathrm{X}$
- NNLO QCD results for $\mathrm{pp}(\rightarrow \mathrm{ZZ}) \rightarrow 4 \ell+\mathrm{X}$
(4) Conclusions \& Outlook

Importance of going beyond NLO in QCD for VV production

Fully exclusive NNLO QCD calculations desirable for several reasons

- Experimental accuracy has significantly increased.
- A reduction of the unphysical dependence on factorization and renormalization scales - and in particular reliability of the remaining scale-variation uncertainty as an estimate for missing higher orders - is expected at NNLO.
- In many process classes, all partonic channels are included only from NNLO on.
- In some phase-space regions, NLO is the first non-vanishing order.
- Jets are treated more realistically.

NLO EW corrections could contribute at the same order of magnitude, at least by naive counting of coupling constants, $\alpha_{\mathrm{s}}^{2} \approx \alpha$.

Leading $\mathrm{N}^{3} \mathrm{LO}$ QCD corrections can be significant (namely the gg channel, which enters only at NNLO).

Data-theory comparison for V cross sections - status mid of 2014

Importance of VV production (with leptonic decays) at NNLO QCD

- Important Standard Model test \rightarrow trilinear gauge-boson couplings.
- Background for Higgs analyses and BSM searches.
- Some moderate excesses $(\approx 2 \sigma)$ in experimental data compared to NLO prediction, e.g. $\mathrm{W} \gamma(A T L A S, 7 \mathrm{TeV}$), WW (ATLAS, 8 TeV ; milder excess also seen at CMS).

[ATLAS collaboration, July 2014]

[CMS collaboration, April 2014]

Data-theory comparison for V cross sections - status end of 2015

Importance of VV production (with leptonic decays) at NNLO QCD

- Important Standard Model test \rightarrow trilinear gauge-boson couplings.
- Background for Higgs analyses and BSM searches.
- Inclusion of NNLO QCD corrections tends to resolve these moderate excesses (also important: extrapolation from fiducial region to inclusive prediction (WW)).

[ATLAS collaboration, November 2015]

[CMS collaboration, April 2016]

The MATRIX framework for automated NNLO+NNLL calculations

Amplitudes

OpenLoops

 (Collier, CutTOols, ...)Dedicated 2-loop codes (VVAMP, GiNAC, TDHPL, ...)

Munich

MUlti-chaNnel Integrator at Swiss (CH) precision
q_{T} subtraction $\Leftrightarrow q_{\mathrm{T}}$ resummation

Matrix

Munich Automates qT subtraction and Resummation to Integrate \mathbf{X}-sections.

Processes available at NNLO QCD within the MATRIX framework

- $\mathrm{pp} \rightarrow \mathbf{H}+\mathrm{X} \quad\left(m_{t} \rightarrow \infty\right)$
- agreement with HNNLO
[Catani, Grazzini (2007); Grazzini (2008), Grazzini, Sargsyan (2013)]
- $\mathrm{pp}(\rightarrow \mathbf{Z}) \rightarrow \ell^{-} \ell^{+}+\mathrm{X}$
- agreement with ZWPROD (on-shell Z)
[Hamberg, van Neerven, Matsuura (1991 \& 2002)]
- agreement with DYNNLO
[Catani, Grazzini (2007); Catani, Cieri, Ferrera, de Florian, Grazzini (2009)]
- $\mathrm{pp}\left(\rightarrow \mathbf{W}^{ \pm}\right) \rightarrow \ell \nu+\mathrm{X}$
- pp $\rightarrow \gamma \gamma+\mathrm{X}$
- agreement with 2GAMmaNNLO
[Catani, Cieri, Ferrera, de Florian, Grazzini (2011)]
(updated version from Nov 2015)

NLO EW corrections

 are implemented in
MUNICH + OPENLOOPS

in a fully automated way!
\hookrightarrow They can be easily made available within

MATRIX

for all (off-shell)
V and VV' processes.

- pp $(\rightarrow \mathbf{Z} \gamma) \rightarrow \ell^{-} \ell^{+} \gamma / \nu \bar{\nu} \gamma+\mathrm{X}$
- $\mathrm{pp}\left(\rightarrow \mathbf{W}^{ \pm} \gamma\right) \rightarrow \ell \nu \gamma+\mathrm{X}$
- $\mathrm{pp}(\rightarrow \mathbf{Z Z}) \rightarrow \ell^{-} \ell^{+} \ell^{\prime-} \ell^{\prime+} / \ell^{-} \ell^{+} \ell^{-} \ell^{+} / \ell^{-} \ell^{+} \nu^{\prime} \bar{\nu}^{\prime} / \ell^{-} \ell^{+} \nu \bar{\nu}+\mathrm{X}$
- $\operatorname{pp}\left(\rightarrow \mathbf{W}^{+} \mathbf{W}^{-}\right) \rightarrow \ell^{+} \nu \ell^{\prime-} \bar{\nu}^{\prime} / \ell^{+} \nu \ell^{-} \bar{\nu}+\mathrm{X}$
- $\operatorname{pp}\left(\rightarrow \mathbf{W}^{ \pm} \mathbf{Z}\right) \rightarrow \ell \nu \ell^{\prime-} \ell^{\prime+} / \ell \nu \ell^{-} \ell^{+}+\mathrm{X}$

NNLO QCD results for $\mathrm{pp}\left(\rightarrow \mathrm{W}^{ \pm} \mathrm{Z}\right) \rightarrow 3 \ell \nu+\mathrm{X}$

$$
\begin{aligned}
& \mathrm{pp} \rightarrow \mathrm{~W}^{+} \mathrm{Z}+\mathrm{X} \\
& \mathrm{pp} \rightarrow \mathrm{~W}^{-} \mathrm{Z}+\mathrm{X}
\end{aligned}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{+} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{+} \quad \ell^{\prime+} \nu_{\ell^{\prime}}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{-} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{\prime-} \ell^{+} \quad \bar{\nu}_{\ell^{\prime}}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{+} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{+} \quad \ell^{+} \nu_{\ell}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{-} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{-} \ell^{+} \bar{\nu}_{\ell}+\mathrm{X}
$$

Inclusive WZ cross sections for relevant LHC energies

- MATRIX results with NNPDF3.0 PDF sets.
- on-shell (left): $m_{\ell \ell / \ell \nu}=m_{\mathrm{Z} / \mathrm{W}}$ ATLAS (center):
$66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$
CMS (right):
$71 \mathrm{GeV}<m_{\ell \ell}<111 \mathrm{GeV}$
(7 and 8 TeV)
$60 \mathrm{GeV}<m_{\ell \ell}<120 \mathrm{GeV}$ (13 and 14 TeV)
- NNLO scale variation $\approx \pm 2 \%$ with $\mu_{0}=\left(M_{\mathrm{W}}+M_{\mathrm{Z}}\right) / 2$. $\left(\begin{array}{rl}\mu_{0} / 2 & \leq \mu_{\mathrm{R}}, \mu_{\mathrm{F}}\end{array} \leq 2 \mu_{0}\right)$
- Large NLO corrections due to approximate radiation zero, which is broken beyond LO.
- NNLO/NLO ranges from 8% to 11% (7 TeV to 14 TeV).
- No NLO EW included.

NNLO QCD results for $\mathrm{pp}\left(\rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\right) \rightarrow 2 \ell 2 \nu+\mathrm{X}$

$$
\mathrm{pp} \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}+\mathrm{X}
$$

$\mathrm{pp}\left(\rightarrow \quad \mathrm{W}^{+} \mathrm{W}^{-}\right) \rightarrow \ell^{-} \ell^{\prime+} \nu_{\ell^{\prime}} \bar{\nu}_{\ell}+\mathrm{X}$ $\mathrm{pp}\left(\rightarrow \mathrm{W}^{+} \mathrm{W}^{-} / \mathrm{ZZ}\right) \rightarrow \ell^{-} \ell^{+} \quad \nu_{\ell} \quad \bar{\nu}_{\ell}+\mathrm{X}$

Inclusive WW cross sections for relevant LHC energies

- MATRIX results with NNPDF3.0 PDF sets.
- on-shell (left): $m_{\ell \nu}=m_{\mathrm{W}}$

ATLAS (center): 8, 13, 14 TeV : $\mathrm{H} \rightarrow \mathrm{WW}^{*}$ included CMS (right): 8, 13, 14 TeV : $\mathrm{H} \rightarrow \mathrm{WW}^{*}$ not included ATLAS and CMS: 7 TeV: Predictions shown with (left) and without (right) $\mathrm{H} \rightarrow \mathrm{WW}^{*}$

- NNLO scale variation $\approx \pm 3 \%$. $\left(\begin{array}{cl}M_{\mathrm{W}} / 2 \leq \mu_{\mathrm{R}}, \mu_{\mathrm{F}} & \leq 2 M_{\mathrm{W}} \\ 1 / 2 & \leq \mu_{\mathrm{R}} / \mu_{\mathrm{F}}\end{array}\right)$
- NNLO/NLO ranges from 9% to 12% (7 TeV to 14 TeV).
- Loop-induced gg channel makes for about 35% of NNLO effect.
- No NLO EW or NLO QCD to gg-fusion channel included.

Fiducial off-shell cross sections for Pp (\rightarrow)

Setup motivated by the ATLAS analysis © 8 TeV [atLAS collaboration (2014\&2016)]

	$\sigma_{\text {fiducial }}\left(W^{+} W^{-}\right.$-cuts) $[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
\sqrt{s}	8 TeV	13 TeV	8 TeV	13 TeV
LO	$147.23(2)_{-4.4 \%}^{+3.4 \%}$	$233.04(2)_{-7.6 \%}^{+6.6 \%}$	-3.8%	-1.3%
NLO	$153.07(2)_{-1.9 \%}^{+1.9 \%}$	$236.19(2)_{-2.4 \%}^{+2.8 \%}$	0	0
NLO^{\prime}	$156.71(3)_{-1.4 \%}^{+1.8 \%}$	$243.82(4)_{-2.2 \%}^{+2.6 \%}$	$+2.4 \%$	$+3.2 \%$
$\mathrm{NLO}^{\prime}+g g$	$166.41(3)_{-1.3 \%}^{+1.3 \%}$	$267.31(4)_{-2.1 \%}^{+1.5 \%}$	$+8.7 \%$	$+13.2 \%$
NNLO^{2}	$164.16(13)_{-0.8 \%}^{+1.3 \%}$	$261.5(2)_{-1.2 \%}^{+1.9 \%}$	$+7.2 \%$	$+10.7 \%$

- Results refer to only one different-flavour channel: $p p \rightarrow \mathrm{e}^{-} \mu^{+} \nu_{\mu} \bar{\nu}_{\mathrm{e}}+\mathrm{X}$
- Event selection imposes a jet veto, so usual scale variation most likely underestimates missing higher-order corrections.
- NLO corrections amount to about $+4 \%(+1 \%)$ wrt. LO result at $8(13) \mathrm{TeV}$.
- NNLO corrections amount to about $+7 \%(+10 \%)$ wrt. NLO result at 8 (13) TeV .
- The positive impact of the NNLO corrections is entirely due to the loop-induced gg contribution, which is about $+6 \%(+10 \%)$ wrt. NLO result at 8 (13) TeV .
$\hookrightarrow \mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ corrections to $q \bar{q}$ are negative and amount to roughly $-2 \%(-3 \%)$.

Distributions for $\mathrm{pp}(\rightarrow$ WW $) \rightarrow 2 \ell 2 \nu+\mathrm{X}$ at NNLO QCD

- NLO and NNLO scale-variation bands typically do not overlap.
\hookrightarrow The loop-induced gg contribution dominates the NNLO corrections.
- By and large the $\mathrm{NLO}^{\prime}+g g$ approximates the full NNLO prediction very well.
- However, shape distortions of up to 10% result from genuine NNLO corrections.
- In phase-space regions that imply the presence of QCD radiation, the loop-induced gg contribution cannot approximate the shapes of full NNLO corrections.

NNLO QCD results for $\mathrm{pp}(\rightarrow Z Z) \rightarrow 4 \ell+\mathrm{X}$

$\mathrm{pp} \rightarrow \mathrm{Z} \mathrm{Z}+\mathrm{X}$

$$
\begin{array}{llllllll}
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \ell^{\prime-} & \ell^{\prime+} & +\mathrm{X} \\
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \ell^{-} & \ell^{+} & +\mathrm{X} \\
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \nu_{\ell^{\prime}} & \bar{\nu}_{\ell^{\prime}} & +\mathrm{X} \\
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{+} \mathrm{W}^{-} / \mathrm{ZZ}\right) & \rightarrow & \ell^{-} & \ell^{+} & \nu_{\ell} & \bar{\nu}_{\ell} & +\mathrm{X}
\end{array}
$$

Inclusive ZZ cross sections for relevant LHC energies

- MATRIX results with NNPDF3.0 PDF sets.
- on-shell (left): $m_{\ell \ell}=m_{Z}$ ATLAS (center): $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$ CMS (right): $60 \mathrm{GeV}<m_{\ell \ell}<120 \mathrm{GeV}$
- NNLO scale variation $\approx \pm 3 \%$. $\left(\begin{array}{rl}M_{\mathrm{Z}} / 2 & \leq \mu_{\mathrm{R}}, \mu_{\mathrm{F}} \leq 2 M_{\mathrm{Z}} \\ 1 / 2 & \leq \mu_{\mathrm{R}} / \mu_{\mathrm{F}} \leq 2\end{array}\right)$
- NNLO/NLO ranges from 12% to 17% (7 TeV to 14 TeV).
- Loop-induced gg channel makes for about 60% of NNLO effect.
- No NLO EW or NLO QCD to gg-fusion channel included.

Fiducial off-shell cross sections for pp $(\rightarrow$ ZZ $)$

Setup adapted to the ATLAS analysis @ 8 TeV [ATLAS collaboration (2013)]

channel	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NNLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{ATLAS}}[\mathrm{fb}]$
$e^{+} e^{-} e^{+} e^{-}$	$3.547(1)_{-3.9 \%}^{+2.9 \%}$	$5.047(1)_{-2.3 \%}^{+2.8 \%}$	$5.79(2)_{-2.6 \%}^{+3.4 \%}$	$4.6_{-0.7}^{+0.8}(\text { stat })_{-0.4}^{+0.4}(\mathrm{syst})_{-0.1}^{+0.1}(\mathrm{lumi})$
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$			$5.0_{-0.5}^{+0.6}(\text { stat })_{-0.2}^{+0.2}(\text { syst })_{-0.2}^{+0.2}(\mathrm{lumi})$	
$e^{+} e^{-} \mu^{+} \mu^{-}$	$6.950(1)_{-3.9 \%}^{+2.9 \%}$	$9.864(2)_{-2.3 \%}^{+2.8 \%}$	$11.31(2)_{-2.5 \%}^{+3.2 \%}$	$11.1_{-0.9}^{+1.0}(\text { stat })_{-0.5}^{+0.5}(\mathrm{syst})_{-0.3}^{+0.3}(\mathrm{lumi})$

- Agreement significantly improved in different-flavour channel.
- Worse agreement in same-flavour channels, but still consistent at the $\approx 1 \sigma$ level.

Setup adapted to the ATLAS analysis @ 13 TeV [ATLAS collaboration (2015)]

channel	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\text {NNLO }}[\mathrm{fb}]$	$\sigma_{\mathrm{ATLAS}}[\mathrm{fb}]$
$e^{+} e^{-} e^{+} e^{-}$	$5.007(1)_{-5 \%}^{+4 \%}$	$6.157(1)_{-2 \%}^{+2 \%}$	$7.14(2)_{-2 \%}^{+2 \%}$	$8.4_{-2.0}^{+2.4}(\mathrm{stat})_{-0.2}^{+0.4}(\mathrm{syst})_{-0.3}^{+0.5}(\mathrm{lumi})$
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$			$6.8_{-1.5}^{+1.8}(\mathrm{stat})_{-0.3}^{+0.3}(\mathrm{syst})_{-0.3}^{+0.4}(\mathrm{lumi})$	
$e^{+} e^{-} \mu^{+} \mu^{-}$		$12.171(2)_{-2 \%}^{+2 \%}$	$14.19(2)_{-2 \%}^{+2 \%}$	$14.7_{-2.5}^{+2.9}(\text { stat })_{-0.4}^{+0.6}(\mathrm{syst})_{-0.6}^{+0.9}(\mathrm{lumi})$

- Agreement improved at NNLO in all channels within quite large (statistical) errors.

Normalized distributions for off-shell $\mathrm{pp}(\rightarrow$ ZZ $)$

Setup adapted to the CMS analysis @ 8 TeV [CMS collaboration (2015)]

channel	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NNLO}}[\mathrm{fb}]$
$e^{+} e^{-} e^{+} e^{-}$	$3.149(1)_{-4.0 \%}^{+3.0 \%}$	$4.493(1)_{-2.3 \%}^{+2.8 \%}$	$5.16(1)_{-2.6 \%}^{+3.3 \%}$
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	$2.973(1)_{-4.1 \%}^{+3.1 \%}$	$4.255(1)_{-2.3 \%}^{+2.8 \%}$	$4.90(1)_{-2.6 \%}^{+3.4 \%}$
$e^{+} e^{-} \mu^{+} \mu^{-}$	$6.179(1)_{-4.0 \%}^{+3.1 \%}$	$8.822(1)_{-2.3 \%}^{+2.8 \%}$	$10.15(2)_{-2.6 \%}^{+3.3 \%}$

- $m(\mathrm{ZZ})$ and $p_{\mathrm{T}}^{\text {lep }}$ distributions: NNLO effect on shapes dominated by gg contribution, no significant NNLO impact on the data agreement.
- $\Delta \phi(\mathrm{ZZ})$ distribution: Shape agreement improves at NNLO $(\Delta \phi(\mathrm{ZZ})=\pi$ at LO).

Corrections to ZZ/WW (WZ) production beyond NNLO QCD

Remaining QCD uncertainty expected to be dominated by gg-fusion contribution:

- Two-loop amplitudes for $\mathrm{gg} \rightarrow \mathrm{VV}^{\prime}$ are available from two independent calculations.
[Caola, Henn, Melnikov, Smirnov, Smirnov (2015); von Manteuffel, Tancredi (2015)]
- Recently, (part of) the NLO QCD corrections to $\mathrm{gg} \rightarrow \mathrm{ZZ} / \mathrm{W}^{+} \mathrm{W}^{-}$were calculated. [Caola, Melnikov, Räntsch, Tancredi (2015 \& 2015)]
(NLO wrt. gg-fusion process, but $\mathrm{N}^{3} \mathrm{LO}$ wrt. $\mathrm{q} \bar{q}$ annihilation process)
\rightarrow Impact wrt. NLO QCD qq prediction (setup of the NNLO QCD calculation):

$$
\mathbf{Z Z :} \approx+\mathbf{6 \%}(+12 \% \rightarrow+18 \%) \quad \text { WW: } \approx+\mathbf{2 \%}(+9 \% \rightarrow+11 \%) \quad(\sqrt{s}=8 \mathrm{TeV})
$$

NLO EW corrections are known (at least in approximations).
[Baglio, Ninh, Weber (2013)]; [Bierweiler, Kasprzik, Kühn (2013)]; Billoni, Dittmaier, Jäger, Speckner (2013);
[Biedermann, Denner, Dittmaier, Hofer, Jäger (2016)], [Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder (2016)]
\rightarrow Corrections wrt. the inclusive (LO) cross section:
ZZ: $\delta_{\text {NLO EW }} \approx-4 \%$
WW: $\delta_{\text {NLO EW }} \approx \mathbf{- 0 . 4 \%}$
$(\sqrt{s}=8 \mathrm{TeV})$

WZ: $\delta_{\text {NLO EW }} \approx-\mathbf{1 . 3 \%}$

$$
\delta_{\mathrm{LO} \gamma \gamma} \approx+\mathbf{1 \%}
$$

- Typical tens of per cent corrections at high transverse momenta.
\hookrightarrow Both NLO QCD to gg and NLO EW corrections can be quantitatively relevant, also at the level of inclusive cross sections, but happen to partially cancel.

Conclusions

MATRIX - an automated framework to perform fully differential NNLO (+NNLL) QCD computations for colourless final-state production - introduced, which is based on

- the MUNICH Monte Carlo integrator,
- the q_{T} subtraction (+resummation) method,
- OPENLOOPS and dedicated 2-loop amplitudes.

NNLO QCD results calculated in the MATRIX framework

- Fully differential results for $\mathrm{pp}(\rightarrow \mathbf{V} \gamma) \rightarrow \ell \ell \gamma / \ell \nu \gamma / \nu \nu \gamma+\mathbb{X}$
- Inclusive and fully differential results for $\mathbf{p p}(\rightarrow \mathbf{Z Z}) \rightarrow 4 \ell+\mathbf{X}$
- NNLO/NLO (inclusive): 12% to $17 \%(7 \mathrm{TeV}$ to 14 TeV$)(\approx 60 \%$ from gg).
- Inclusive and fully differential cross sections for pp $\left(\rightarrow \mathbf{W}^{+} \mathbf{W}^{-}\right) \rightarrow \mathbf{2 \ell 2 \nu}+\mathbf{X}$
- NNLO/NLO (inclusive): 9% to $12 \%(7 \mathrm{TeV}$ to 14 TeV$)(\approx 35 \%$ from gg$)$.
- Different situation with jet-veto: $g g$ dominates, $q \bar{q}$ slightly negative.
- Inclusive cross sections for $\mathbf{p p} \rightarrow \mathbf{W}^{ \pm} \mathbf{Z}(\rightarrow \mathbf{3 \ell \nu})+\mathbf{X}$
- NNLO/NLO (inclusive): 8% to 11% (7 TeV to 14 TeV).
\hookrightarrow Improved agreement between data and theory by NNLO prediction.

Outlook

- More phenomenological studies on VV processes
- Planned extensions of the MATRIX framework
- Combination with NLO EW corrections (available in MUNICH+OPENLOOPS).
- Implementation of gg-induced processes (leading $\mathrm{N}^{3} \mathrm{LO}$).
- Simultaneous studies on pdf uncertainties, ...
- First step done:

Private beta version of the program MATRIX for selected ATLAS/CMS colleagues

Backup slides

External ingredients: amplitudes applied in the calculation

1-loop amplitudes with OPENLOOPS [Cascioli, Maierhöfer, Pozzorini (2011); Cascioli, Lindert, Maierhöfer, Pozzorini (2014)]

- All tree and (squared) one-loop amplitudes (including colour/helicity correlations)
- Fully automated compact and fast numerical code for any SM process (QCD+EW)
- Tensor reduction by means of the ColliER library [Denner, Dittmaier, Hofer (2014)]
- Numerically stable Denner-Dittmaier reduction methods [Denner, Dittmaier (2002 \& 2005)]
- Scalar integrals with complex masses [Denner, Dittmaier (2010)]
- Rescue system based on quad-precision CuTTOOLS [Ossola, Papadopoulos, Pittau (2008)]
- Scalar integrals from ONELOOP [van Hameren, Papadopoulos, Pittau (2009); van Hameren (2010)]

2-loop amplitudes from analytic results

- Drell-Yan-like amplitudes from [Matsura, van der Marck, van Neerven (1989)]
- $\mathrm{V} \gamma$ helicity amplitudes from [Gehrmann, Tancredi (2011)], using TDHPL [Gehrmann, Remiddi (2001)]
- On-shell VV amplitudes from private code [von Manteuffel, Tancredi (2014)], using GiNAC (applied in [Cascioli et al. (2014); Gehrmann et al. (2014); Grazzini, SK, Rathlev, Wiesemann (2015)])
- Off-shell helicity VV' amplitudes from VVAMP [Gehrmann, von Manteuffel, Tancredi (2015)] , using GiNAC [Bauer, Frink, Kreckel (2002); Vollinga, Weinzierl (2005)] (independent calculation by [Caola, Henn, Melnikov, Smirnov, Smirnov (2014)])

Idea of the q_{T} subtraction method for (N)NLO cross sections

Consider the production of a colourless final state F via $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{F}$ or $\mathrm{gg} \rightarrow \mathrm{F}$:

$$
\left.\mathrm{d} \sigma_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}}\right|_{q_{\mathrm{T}} \neq 0}=\mathrm{d} \sigma_{\mathrm{F}+\mathrm{jet}}^{(\mathrm{N}) \mathrm{LO}}
$$

where q_{T} refers to the transverse momentum of the colourless system F. [Catani, Grazzini (2007)] $\left.\mathrm{d} \sigma_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}}\right|_{q_{\mathrm{T}} \neq 0} \quad$ is singular for $q_{\mathrm{T}} \rightarrow 0$, but the limiting behaviour is known from
transverse-momentum resummation. [Bozzi, Catani, de Florian, Grazzini (2006)]

- Define a universal counterterm Σ with the complementary $q_{\mathrm{T}} \rightarrow 0$ behaviour, $\mathrm{d} \sigma^{\mathrm{CT}}=\Sigma\left(q_{\mathrm{T}} / Q\right) \otimes \mathrm{d} \sigma^{\mathrm{LO}}$, where Q is the invariant mass of the colourless system F .
- Add the $q_{\mathrm{T}}=0$ piece with the hard-virtual coefficient \mathcal{H}_{F}, which is derived from the 1-(2-)loop amplitudes at (N)NLO, and also compensates for the subtraction of Σ.
\hookrightarrow Full result for (N)NLO cross section

$$
\mathrm{d} \sigma_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}}=\mathcal{H}_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}} \otimes \mathrm{~d} \sigma^{\mathrm{LO}}+\left[\mathrm{d} \sigma_{\mathrm{F}+\mathrm{jet}}^{(\mathrm{N}) \mathrm{LO}}-\Sigma^{(\mathrm{N}) \mathrm{NLO}} \otimes \mathrm{~d} \sigma^{\mathrm{LO}}\right]_{\mathrm{cut}_{\mathrm{q}_{\mathrm{T}} \rightarrow 0}}
$$

Ingredients of the q_{T} subtraction method

$$
\mathrm{d} \sigma_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}}=\mathcal{H}_{\mathrm{F}}^{(\mathrm{N}) \mathrm{NLO}} \otimes \mathrm{~d} \sigma^{\mathrm{LO}}+\left[\mathrm{d} \sigma_{\mathrm{F}+\mathrm{jet}}^{(\mathrm{N}) \mathrm{LO}}-\Sigma^{(\mathrm{N}) \mathrm{NLO}} \otimes \mathrm{~d} \sigma^{\mathrm{LO}}\right]_{\mathrm{cut}_{\mathrm{q}_{\mathrm{T}} \rightarrow 0}}
$$

- The hard-virtual coefficient \mathcal{H}_{F},

$$
\mathcal{H}_{\mathrm{F}}=\underbrace{1}_{\begin{array}{c}
\text { tree-level } \\
\text { amplitude }
\end{array}}+\underbrace{\left(\frac{\alpha_{S}}{\pi}\right) \mathcal{H}^{\mathrm{F}(1)}}_{\begin{array}{c}
\text { contains (finite) } \\
\text { 1-loop amplitude }
\end{array}}+\underbrace{\left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{\mathrm{F}(2)}}_{\begin{array}{c}
\text { contains (finite) } \\
\text { 2-loop amplitude }
\end{array}}+\ldots
$$

is known up to 2-loop order by means of a process-independent extraction procedure, starting from the all-order virtual amplitude of the specific process.
[Catani, Cieri, de Florian, Ferrera, Grazzini (2013)]

- The counterterm $\Sigma\left(\mathrm{q}_{\mathrm{T}} / \mathrm{Q}\right)$,

$$
\Sigma\left(\mathrm{q}_{\mathrm{T}} / \mathrm{Q}\right)=\left(\frac{\alpha_{S}}{\pi}\right) \Sigma^{(1)}\left(\mathrm{q}_{\mathrm{T}} / \mathrm{Q}\right)+\left(\frac{\alpha_{S}}{\pi}\right)^{2} \Sigma^{(2)}\left(\mathrm{q}_{\mathrm{T}} / \mathrm{Q}\right)+\ldots,
$$

is universal (differs for $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{F}$ and $\mathrm{gg} \rightarrow \mathrm{F}$, trivial process dependence), and the coefficients are known (up to 2-loop order). [Bozzi, Catani, de Florian, Grazzini (2006)]

- The real-emission contribution $\mathrm{d} \sigma_{\mathrm{F}+\mathrm{jet}}^{\mathrm{NLO}}$ can be treated by any local NLO subtraction technique, e.g. by conventional dipole subtraction. [Catani, Seymour (1993)]

Numerical realization of the calculation

Realized within the fully automated NLO (QCD+EW) Monte Carlo framework MUNICH (MUlti-channel Integrator at Swiss (내) precision) [Sk]

- Applicable for arbitrary Standard Model processes (including partonic bookkeeping).
- Phase-space integration by highly efficient multi-channel Monte Carlo techniques \hookrightarrow Additional MC channels based on dipole kinematics constructed at runtime.
- OpenLoops interface, automatized implementation of dipole subtraction, etc.
- Simultaneous calculation for different scale choices and variations.

Extension to automated (q_{T} subtraction) NNLO QCD framework [Grazini, sk, Rathlev]

- Process-independent construction of $\mathrm{cut}_{q_{\mathrm{T}} / q^{-}}$-dependent counterterms $\Sigma^{(1,2)}$.
- Process-independent extraction procedure for hard coefficients $\mathcal{H}^{(1,2)}$.
- Importance sampling performed on top of multi-channel approach \hookrightarrow improved efficiency and reliability in particular for low $\mathrm{cut}_{q_{\mathrm{T}} / q}$ values.
- Simultaneous evaluation of observables for different values of the regulator $\mathrm{cut}_{q_{\mathrm{T}} / q}$ \hookrightarrow allows for monitoring of $\mathrm{cut}_{q_{\mathrm{T}} / q}$ and for extrapolation $\mathrm{cut}_{q_{\mathrm{T}} / q} \rightarrow 0$.

NLO QCD cross section via dipole subtraction

Schematic formula for the NLO cross section with dipoles [Catani, Seymour (1993)]

$$
\begin{aligned}
\delta \sigma^{\mathrm{NLO}}= & \underbrace{\int_{m+1} d \sigma^{R}}_{\begin{array}{c}
\text { real } \\
\text { corrections }
\end{array}}+\underbrace{\int_{m} d \sigma^{V}}_{\begin{array}{c}
\text { virtual } \\
\text { corrections }
\end{array}}+\underbrace{\int_{0}^{1} d z \int_{m} d \sigma^{C}}_{\begin{array}{c}
\text { collinear-subtraction } \\
\text { counterterm }
\end{array}}-\int_{m+1} d \sigma^{A}+\int_{m+1} d \sigma^{A} \\
= & \int_{m+1}\left[d \sigma^{R}-d \sigma^{A}\right]_{\epsilon=0} d \sigma_{\text {dipoles }}^{B} \otimes d V_{\text {dipole }} \\
& +\int_{m}\left[d \sigma^{V}+\sum_{\text {dipoles }} d \sigma^{B} \otimes V_{\text {dipole }}(1)\right]_{\epsilon=0} \Rightarrow \delta \sigma^{\mathrm{RA}} \Rightarrow \delta \sigma^{\mathrm{VA}} \\
& +\int_{0}^{1} d z \int_{m}\left[d \sigma^{C}+\sum_{\text {dipoles }} \int_{1} d \sigma^{B}(z) \otimes\left[d V_{\text {dipole }}(z)\right]_{+}\right]_{\epsilon=0} \Rightarrow \delta \sigma^{\mathrm{CA}} \\
& d V_{\text {dipole }}(z)=\left[d V_{\text {dipole }}(z)\right]_{+}+d V_{\text {dipole }}(1) \delta(1-z)
\end{aligned}
$$

\hookrightarrow Local subtraction terms (Catani-Seymour dipole terms) allow for mediation of infrared (soft and collinear) divergences between the different phase spaces.

NLO QCD cross section via q_{T} subtraction

Schematic formula for the NLO cross section via q_{T} subtraction [Catani, Grazzini (2007)]

$$
\begin{aligned}
\delta \sigma^{\mathrm{NLO}}= & \underbrace{\int_{m+1} d \sigma^{R}}_{\text {real }}+\underbrace{\int_{m} d \sigma^{v}}_{\text {virtual }}+\underbrace{\int_{0}^{1} d z \int_{m} d \sigma^{C}}_{\text {collinear }} \\
= & \left.\int_{m+1} d \sigma^{R}\right|_{q_{\mathrm{T}} / q>\mathrm{cut}_{q_{\mathrm{T}} / q}} \\
& +\underbrace{\left.\int_{m+1} d \sigma^{R}\right|_{q_{\mathrm{T}} / q \leq \mathrm{cut}_{q_{\mathrm{T}} / q}}}_{\begin{array}{c}
\text { approximated by results known } \\
\text { from } q_{\mathrm{T}} \text { resummation }
\end{array}}+\underbrace{}_{\begin{array}{c}
\int_{m} d \sigma^{V}+\int_{0}^{1} d z \int_{m} d \sigma^{C} \\
\int_{m} d i f i e d \text { with corresponding terms } \\
\text { in } q_{\mathrm{T}} \text { resummation }
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\approx \quad \int_{m+1} d \sigma^{R}\right|_{q_{\mathrm{T}} / q>\mathrm{cut}_{q_{\mathrm{T}} / q}}+\frac{\alpha_{S}}{\pi} \mathcal{H}^{\mathrm{F}(1)} \otimes \sigma_{\mathrm{LO}}
\end{aligned} \begin{aligned}
& \left\{\begin{array}{l}
0 \text { no cut } q_{\mathrm{T}} / q \text { dependence, } \\
0 \text { contains (finite) 1-loop part. }
\end{array}\right. \\
& \quad-\frac{\alpha_{S}}{\pi} \int_{\mathrm{cut}_{q_{\mathrm{T}} / q}}^{\infty} d\left(q_{\mathrm{T}} / q\right) \Sigma^{(1)}\left(\mathrm{q}_{\mathrm{T}} / \mathrm{q}\right) \otimes \sigma_{\mathrm{LO}}
\end{aligned}\left\{\begin{array}{l}
0 \text { cancels cut } q_{\mathrm{T}} / q \text { dependence, } \\
0 \text { assigned to Born phase-space. }
\end{array}\right.
$$

NNLO QCD cross section via q_{T} subtraction

Schematic formula for the NNLO cross section
$\delta \sigma^{\mathrm{NNLO}}=\underbrace{\int_{m+2} d \sigma^{R R}}_{\text {double-real }}+\underbrace{\int_{m+1} d \sigma^{R V}}_{\text {real-virtual }}+\underbrace{\int_{0}^{1} d z \int_{m+1} d \sigma^{R C}}_{\text {real-collinear }}$

$$
\begin{aligned}
& =\sigma_{\mathrm{NLO}} \Rightarrow \text { at } q_{\mathrm{T}} \neq 0 \text { calculable via NLO subtraction, } \\
& =\sigma_{F+j e t}^{N} \Rightarrow \text { but divergent for } q_{\mathrm{T}} \rightarrow 0 \Rightarrow \mathrm{cut}_{q_{\mathrm{T}} / q} \\
& +\underbrace{\int_{m} d \sigma^{V V}}_{\text {double-virtual }}+\underbrace{\int_{0}^{1} d z \int_{m} d \sigma^{V C}}_{\text {virtual-collinear }}+\underbrace{\int_{0}^{1} d z_{1} \int_{0}^{1} d z_{2} \int_{m} d \sigma^{C C}}_{\text {double-collinear }} \\
& =\left.\sigma_{F+j e t}^{\mathrm{NLO}}\right|_{q_{\mathrm{T}} / q>\operatorname{cut}_{q_{\mathrm{T}} / q}} \\
& +\underbrace{\left.\sigma \sigma_{F+j e t}^{\mathrm{NLO}}\right|_{q_{\mathrm{T}} / q \leq \mathrm{cut}_{q_{\mathrm{T}} / q}}}+\underbrace{\int_{m} d \sigma^{V V}+\int_{0}^{1} d z \int_{m} d \sigma^{V C}+\int_{0}^{1} d z_{1} \int_{0}^{1} d z_{2} \int_{m} d \sigma^{c c}} \\
& \text { approximated by results known } \\
& \text { from } q_{\mathrm{T}} \text { resummation } \\
& \text { identified with corresponding terms } \\
& \text { in } q_{T} \text { resummation }
\end{aligned}
$$

NNLO QCD cross section via q_{T} subtraction

Schematic formula for the NNLO cross section
$\delta \sigma^{\mathrm{NNLO}}=\underbrace{\left.\left[\int_{m+2} d \sigma^{R R A}+\int_{m+1} d \sigma^{R V A}+\int_{0}^{1} d z \int_{m+1} d \sigma^{R C A}\right]\right|_{q_{\mathrm{T}} / q>\mathrm{cut}_{q_{\mathrm{T}} / q}}}$
$=\left.\sigma_{F+j e t}^{\mathrm{NLO}}\right|_{q_{\mathrm{T}} / q>\operatorname{cut}_{q_{\mathrm{T}} / q}} \Rightarrow$ finite, but depends on $\mathrm{cut}_{q_{\mathrm{T}} / q}$
$-\left(\frac{\alpha_{S}}{\pi}\right)^{2} \int_{\text {cut }_{q_{\mathrm{T}} / q}}^{\infty} d\left(q_{\mathrm{T}} / q\right) \Sigma^{(2)}\left(q_{\mathrm{T}} / \mathrm{q}\right) \otimes \sigma_{\mathrm{LO}}\left\{\begin{array}{l}0 \text { cancels cut } q_{\mathrm{T}} / q \text { dependence } \\ 0 \text { contains (finite) 1-loop part } \\ 0 \text { assigned to Born phase-space. }\end{array}\right.$
$+\left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{F(2)} \otimes \sigma_{\mathrm{LO}}\left\{\begin{array}{l}0 \text { no } \text { cut }_{q_{\mathrm{T}} / \text { q }} \text { dependence } \\ 0 \text { contains (finite) 2-loop part. }\end{array}\right.$
All relevant ingredients from q_{T} resummation $\left(\mathcal{H}^{F(i)}, \Sigma^{(i)}\left(q_{\mathrm{T}} / q\right)\right.$ for $\left.i \leq 2\right)$ are known.
\hookrightarrow Direct implementation into a Monte Carlo integrator feasible.

NNLO QCD results for $\operatorname{pp}(\rightarrow \mathrm{V} \gamma) \rightarrow \ell \ell / \nu \nu \gamma / \ell \nu \gamma+\mathrm{X}$

$$
\begin{array}{lllll}
\mathrm{pp} & (\rightarrow & \mathrm{Z} \gamma) & \rightarrow & \ell^{-} \\
\ell^{+} & \gamma+\mathrm{X} \\
\mathrm{pp} & (\rightarrow & \mathrm{Z} \gamma) & \rightarrow & \nu_{\ell} \\
\bar{\nu}_{\ell} & \gamma+\mathrm{X} \\
\mathrm{pp} & \left(\rightarrow \mathrm{~W}^{+} \gamma\right) & \rightarrow & \ell^{+} & \nu_{\ell} \\
& \gamma+\mathrm{X} \\
\mathrm{pp} & \left(\rightarrow \mathrm{~W}^{-} \gamma\right) & \rightarrow & \ell^{-} & \bar{\nu}_{\ell} \\
& \gamma+\mathrm{X}
\end{array}
$$

Setup for $\mathrm{pp}(\rightarrow \mathrm{Z} \mathrm{\gamma}) \rightarrow \ell \ell+\mathrm{X}$

Setup adapted to the ATLAS analysis @ 7 TeV
[ATLAS collaboration (2013)]

Leptons	$p_{\mathrm{T}}^{\ell}>25 \mathrm{GeV}$
$\left\|\eta^{\ell}\right\|<2.47$	
Photon	$p_{\mathrm{T}}^{\gamma}>15 \mathrm{GeV}\left(\right.$ soft $\left.p_{\mathrm{T}}^{\gamma} \mathrm{cut}\right)$ or $p_{\mathrm{T}}^{\gamma}>40 \mathrm{GeV}$ (hard p_{T}^{γ} cut)
	$\left\|\eta^{\gamma}\right\|<2.37$

Frixione isolation with $\varepsilon_{\gamma}=0.5, R=0.4, n=1$

Jets \begin{tabular}{c}

anti- k_{T}| algorithm with $D=0.4$ |
| :---: |
| $p_{\mathrm{T}}^{\text {jet }}>30 \mathrm{GeV}$ |

$\left|\eta^{\text {jet }}\right|<4.4$

$N_{\text {jet }} \geq 0$ (inclusive) or $N_{\text {jet }}=0$ (exclusive)
\end{tabular}

Separation | $m_{\ell \ell}>40 \mathrm{GeV}$ |
| :---: |
| $\Delta R(\ell, \gamma)>0.7$ |
| $\Delta R(\ell / \gamma, \mathrm{jet})>0.3$ |

$$
\begin{gathered}
m_{\ell \ell}>40 \mathrm{GeV} \\
\Delta R(\ell, \gamma)>0.7 \\
\Delta R(\ell / \gamma, \text { jet })>0.3
\end{gathered}
$$

LO diagrams

Setup for $\mathrm{pp}(\rightarrow \mathrm{W} \gamma) \rightarrow \ell \nu \gamma+\mathrm{X}$

Setup adapted to the ATLAS analysis @ 7 TeV
[ATLAS collaboration (2013)]

Lepton	$p_{\mathrm{T}}^{\ell}>25 \mathrm{GeV}$
	$\|\eta\|<2.47$
Neutrino	$p_{\mathrm{T}}^{\nu}>35 \mathrm{GeV}$
Photon	$p_{\mathrm{T}}^{\gamma}>15 \mathrm{GeV}$ (soft p_{T}^{γ} cut) or $p_{\mathrm{T}}^{\gamma}>40 \mathrm{GeV}$ (hard p_{T}^{γ} cut)
	$\left\|\eta^{\gamma}\right\|<2.37$

Frixione isolation with $\varepsilon_{\gamma}=0.5, R=0.4, n=1$

Jets	anti- k_{T} algorithm with $D=0.4$
$p_{\mathrm{T}}^{\text {jet }}>30 \mathrm{GeV}$	
$\left\|\eta^{\text {jet }}\right\|<4.4$	
	$N_{\text {jet }} \geq 0$ (inclusive) or $N_{\text {jet }}=0$ (exclusive)
Separation	$\Delta R(\ell, \gamma)>0.7$
$\Delta R(\ell / \gamma$, jet $)>0.3$	

Setup for pp $(\rightarrow \mathrm{Z} \gamma) \rightarrow \nu \nu \gamma+\mathrm{X}$

Setup adapted to the ATLAS analysis @ 7 TeV

[ATLAS collaboration (2013)]

Neutrinos	$p_{\mathrm{T}}^{\nu \bar{\nu}}>90 \mathrm{GeV}$
Photon	$p_{\mathrm{T}}^{\gamma}>100 \mathrm{GeV}$
	$\left\|\eta^{\gamma}\right\|<2.37$
	Frixione isolation with $\varepsilon_{\gamma}=0.5, R=0.4, n=1$
Jets	$p_{\mathrm{T}}^{\mathrm{jet}}>30 \mathrm{GeV}$
	$\left\|\eta^{\text {jet }}\right\|<4.4$
	$N_{\text {jet }} \geq 0$ (inclusive) or $N_{\text {jet }}=0$ (exclusive)
Separation	$\Delta R(\gamma$, jet) >0.3

LO diagrams

Photon isolation

Two contributions to photon production

- Direct production in the hard process,
- Non-perturbative fragmentation of a hard parton.

Different approaches to define isolated photons

- Naive ansatz: forbid any partons inside a fixed cone around the photon.
\hookrightarrow Not infrared safe beyond LO QCD as soft gluons inside the cone are forbidden.
- Hard cone isolation (experimentally preferred)

$$
\sum_{\delta^{\prime}<\delta_{0}} E_{\mathrm{had}, \mathrm{~T}}\left(\delta^{\prime}\right) \leq \varepsilon_{\gamma} E_{\gamma, \mathrm{T}}, \quad \quad \delta_{i \gamma}=\sqrt{\left(\eta_{i}-\eta_{\gamma}\right)^{2}+\left(\phi_{i}-\phi_{\gamma}\right)^{2}}
$$

\hookrightarrow Only infrared safe if combined with fragmentation contribution (due to quark-photon collinear singularity).

- Smooth cone isolation [Frixione (1998)]

$$
\sum_{\delta^{\prime}<\delta} E_{\mathrm{had}, \mathrm{~T}}\left(\delta^{\prime}\right) \leq \varepsilon_{\gamma} E_{\gamma, \mathrm{T}}\left(\frac{1-\cos (\delta)}{1-\cos \left(\delta_{0}\right)}\right)^{n} \quad \forall \quad \delta \leq \delta_{0}
$$

\hookrightarrow Smooth cone isolation eliminates fragmentation contribution completely.

Setup adapted to the ATLAS analysis @ 7 TeV [ATLAS collaboration (2013)]

process	$p_{\text {T, cut }}^{\gamma}$	$N_{\text {jet }}$	$\sigma_{\mathrm{LO}}[\mathrm{pb}]$	$\sigma_{\text {NLO }}[\mathrm{pb}]$	$\sigma_{\text {NNLO }}[\mathrm{pb}]$	$\sigma_{\text {ATLAS }}[\mathrm{pb}]$	$\frac{\sigma_{\text {NLO }}}{\sigma_{\mathrm{LO}}}$	$\frac{\sigma_{\text {NNLO }}}{\sigma_{\text {NLO }}}$
$\stackrel{\mathrm{Z} \gamma}{\rightarrow \ell \ell \gamma}$	soft	≥ 0	$0.8149{ }_{-9.3 \%}^{+8.0 \%}$	$1.222_{-5.3 \%}^{+4.2 \%}$	$1.320_{-2.3 \%}^{+1.3 \%}$		+50\%	+8\%
		$=0$		${ }^{1.031}{ }_{-4.3 \%}^{+2.7 \%}$	$1.059{ }_{-1.4 \%}^{+0.7 \%}$	$1.05 \begin{gathered} \pm 0.02(\mathrm{stat}) \\ \pm 0.100 \\ \text { syst) } \\ \pm 0.04(\mathrm{lumi})\end{gathered}$	+27\%	+3\%
	hard	≥ 0	$0^{0.0736}+3.5 \%$	${ }^{0.1320}+4.2 \%$	$0^{0.1543}{ }_{-2.8 \%}^{+3.1 \%}$		+79\%	+17\%
$\left\lvert\, \begin{aligned} & \mathrm{Z} \gamma \\ & \rightarrow \nu \nu \gamma \end{aligned}\right.$		≥ 0	$0.0788_{-0.9 \%}^{+0.3 \%}$	$0.1237_{-3.1 \%}^{+4.1 \%}$	$0.1380{ }_{-2.3 \%}^{+2.5 \%}$	$0 . \begin{aligned} & \pm 0.013 \text { (stat) } \\ & 0.133 \begin{array}{l} \text { (stat) } \\ \pm 0.020 \\ \pm 0.005 \text { (lumt) (lumi) } \end{array} \\ & \hline \end{aligned}$	+57\%	+12\%
		$=0$		$0^{0.0881}+1.2 \%$	$0.0866_{-0.9 \%}^{+1.0 \%}$		+12\%	-2\%
$\left\lvert\, \begin{aligned} & \mathbf{W} \gamma \\ & \rightarrow \ell \nu \gamma \end{aligned}\right.$	soft	≥ 0	$0.8726_{-8.1 \%}^{+6.8 \%}$	$2.058{ }_{-6.8 \%}^{+6.8 \%}$	$2.453_{-4.1 \%}^{+4.1 \%}$		+136\%	+19\%
		$=0$		$1.395_{-5.8 \%}^{+5.2 \%}$	$1.493{ }_{-2.7 \%}^{+1.7 \%}$		+60\%	+7\%
	hard	≥ 0	$0.1158_{-3.7 \%}^{+2.6 \%}$	${ }^{0.3959}+7.30 \%$	$\mathrm{O}^{0.4971-4.7 \%}$		+242\%	+26\%

- Loop-induced gg contributions in $\mathrm{Z} \gamma$ turn out to be very small ($<15 \%$ of NNLO).
- Larger K factors in $\mathrm{W} \gamma$ than in $\mathrm{Z} \gamma$ can be explained by breaking of radiation zero.
- Larger K factors in hard than in soft setups due to implicit phase-space restrictions.

p_{T}^{γ} distributions for pp $\left(\rightarrow \mathrm{Z}_{\gamma} / \mathrm{W} \gamma\right) \rightarrow \ell \ell / \ell_{\nu} \gamma+\mathrm{X}$

pp $(\rightarrow \mathrm{Z} \gamma) \rightarrow \ell \ell \gamma+\mathbf{X}$
$N_{\text {jet }} \geq 0$ (left)
$N_{\text {jet }}=0$ (right)

$\mathrm{pp}(\rightarrow \mathbf{W} \gamma) \rightarrow \ell \nu \gamma+\mathrm{X}$
$N_{\text {jet }} \geq 0$ (left)
$N_{\text {jet }}=0$ (right)

- Agreement between data and theory is significantly improved when including NNLO corrections as compared to NLO prediction, in particular without jet veto.
- No NLO EW corrections included, which become large and negative for higher p_{T} 's.
[Denner, Dittmaier, Hecht, Pasold (2014 \& 2015)]

Invariant/transverse mass distributions for $\mathrm{pp} \rightarrow \ell \gamma / \ell_{\nu} \gamma+\mathrm{X}$

$\mathrm{pp}(\rightarrow \mathrm{Z} \gamma) \rightarrow \ell \ell \gamma+\mathrm{X} \quad$ Distribution in the invariant mass $m_{\ell \ell \gamma}$

- Implicit LO phase-space restrictions: $m_{\ell \ell \gamma} \approx 66 \mathrm{GeV}$ (soft) vs. $m_{\ell \ell \gamma} \approx 97 \mathrm{GeV}$ (hard) $\mathrm{pp}(\rightarrow \mathrm{W} \gamma) \rightarrow \ell \nu \gamma+\mathrm{X} \quad$ Distribution in the transverse mass $m_{\mathrm{T}}^{\ell \nu \gamma}$

- Implicit LO phase-space restrictions: $m_{\mathrm{T}}^{\ell \nu \gamma} \approx 75 \mathrm{GeV}$ (soft) vs. $m_{\mathrm{T}}^{\ell \nu \gamma} \approx 100 \mathrm{GeV}$ (hard)

Comparison between $\mathrm{Z} \gamma$ and $\mathrm{W} \gamma$ results

Considerably larger K factors in $\mathbf{W} \gamma$ than in \mathbf{Z}_{γ}

process	$p_{\mathrm{T}, \mathrm{cut}}^{\gamma}$	$N_{\text {jet }}$	$\frac{\sigma_{\mathrm{NLO}}}{\sigma_{\mathrm{LO}}}$	$\frac{\sigma_{\mathrm{NNLO}}}{\sigma_{\mathrm{NLO}}}$
Z_{γ}	soft	$N_{\text {jet }} \geq 0$	$+50 \%$	+8\%
W_{γ}			+136\%	+19\%
Z_{γ}	soft	$N_{\text {jet }}=0$	+27\%	+3\%
W_{γ}			+60\%	+7\%
Z_{γ}	hard	$N_{\text {jet }} \geq 0$	+79\%	+17\%
W_{γ}			+242\%	+26\%

Explanation: Breaking of radiation zero beyond LO

- $\mathrm{u} \overline{\mathrm{d}} / \mathrm{d} \overline{\mathrm{u}} \rightarrow \mathrm{W}^{ \pm} \gamma$ amplitudes vanish at $\cos \theta_{\mathrm{q} \gamma, \mathrm{CMS}}=\mp 1 / 3$. [Mikaelian/Samue//Sahdev (1979)]
- Radiation zero leads to a dip at $\Delta y_{\ell \gamma}=0$ in pp collisions. [Baur/Errede/Landsberg (1994)]

\hookrightarrow Dip filled by higher-order corrections.

Numerical stability and dependence on $\operatorname{cut}_{q_{T} / q}$

q_{T} subtraction at NLO

\mathbf{q}_{T} subtraction at NNLO

NNLO QCD results for pp $\left(\rightarrow \mathrm{W}^{ \pm} \mathrm{Z}\right) \rightarrow 3 \ell \nu+\mathrm{X}$

$$
\begin{aligned}
& \mathrm{pp} \rightarrow \mathrm{~W}^{+} \mathrm{Z}+\mathrm{X} \\
& \mathrm{pp} \rightarrow \mathrm{~W}^{-} \mathrm{Z}+\mathrm{X}
\end{aligned}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{+} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{+} \quad \ell^{\prime+} \nu_{\ell^{\prime}}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{-} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{\prime-} \ell^{+} \bar{\nu}_{\ell^{\prime}}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{+} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{+} \quad \ell^{+} \quad \nu_{\ell}+\mathrm{X}
$$

$$
\mathrm{pp}\left(\rightarrow \mathrm{~W}^{-} \mathrm{Z}\right) \rightarrow \ell^{-} \ell^{-} \ell^{+} \bar{\nu}_{\ell}+\mathrm{X}
$$

Dependence on $\mathrm{cut}_{\mathrm{q}_{\mathrm{T}} / q}$ - inclusive ATLAS © 8TeV

\mathbf{q}_{T} subtraction at NLO

\mathbf{q}_{T} subtraction at NNLO

NNLO QCD results for $\mathrm{pp}\left(\rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\right) \rightarrow 2 \ell 2 \nu+\mathrm{X}$

$$
\mathrm{pp} \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}+\mathrm{X}
$$

$\mathrm{pp}\left(\rightarrow \quad \mathrm{W}^{+} \mathrm{W}^{-}\right) \rightarrow \ell^{-} \ell^{\prime+} \nu_{\ell^{\prime}} \bar{\nu}_{\ell}+\mathrm{X}$ $\mathrm{pp}\left(\rightarrow \mathrm{W}^{+} \mathrm{W}^{-} / \mathrm{ZZ}\right) \rightarrow \ell^{-} \ell^{+} \nu_{\ell} \bar{\nu}_{\ell}+\mathrm{X}$

Definition of top-contamination free WW cross section

- Non-trivial in 5FNS (massless b's \rightarrow WW and WWb \bar{b} connected by IR structure)
- Single-top production enters at NLO.

- Top-pair production enters at NNLO.

\hookrightarrow Huge "higher-order corrections" result from top-resonance contamination in 5FNS (cross-section enhancement of $30 \% / 400 \%$ at NLO/NNLO for $\sqrt{s}=8 \mathrm{TeV}$).
- Straightforward in 4FNS (massive b's \rightarrow WWbb̄ finite and can be split off)

Extrapolation in top width to isolate WW contributions

Γ_{t}-dependence of NNLO cross section can be used to isolate the different processes

- Exploit the Γ_{t} dependence of the genuine WW, tW, and $\mathrm{t} \overline{\mathrm{t}}$ contributions,

$$
\sigma_{\mathrm{WW}} \propto 1, \quad \sigma_{\mathrm{tW}} \propto 1 / \Gamma_{\mathrm{t}}, \quad \sigma_{\mathrm{t} \overline{\mathrm{t}}} \propto 1 / \Gamma_{\mathrm{t}}^{2}
$$

and treat Γ_{t} as technical parameter to approach the $\Gamma_{\mathrm{t}} \rightarrow 0$ limit.
\hookrightarrow Parabolic fit of the $\left(\Gamma_{\mathrm{t}} / \Gamma_{\mathrm{t}}^{\text {phys }}\right)^{2}$-rescaled cross section delivers $\sigma_{\mathrm{WW}}, \sigma_{\mathrm{tW}}, \sigma_{\mathrm{t} \overline{\mathrm{t}}}$.

Comparison between 4FNS and 5FNS WW cross sections

- About 15% of enhancement remain at NNLO for "physical" $p_{\mathrm{T}, \text { bjet }}^{\text {veto }} \approx 30 \mathrm{GeV}$.
- The limit $p_{\mathrm{T}, \text { bjet }}^{\text {veto }} \rightarrow 0 \mathrm{GeV}$ cannot be directly accessed (Infrared divergent in 5 FNS).
- Extrapolation gives $\approx 1-2 \%$ agreement between 4FNS and 5FNS for $p_{\mathrm{T}, \text { bjet }}^{\text {veto }} \rightarrow \infty$.

Dependence on $\mathrm{cut}_{\mathrm{qT}_{\mathrm{T}} / 9}$ - inclusive © 8 TeV

q_{T} subtraction at NLO

q_{T} subtraction at NNLO

Dependence on $\mathrm{cut}_{q_{\mathrm{T}} / q}$ - Higgs © 8 TeV

\mathbf{q}_{T} subtraction at NLO

q_{T} subtraction at NNLO

NNLO QCD results for $\mathrm{pp}(\rightarrow Z Z) \rightarrow 4 \ell+\mathrm{X}$

$$
\mathrm{pp} \rightarrow \mathrm{Z} \mathrm{Z}+\mathrm{X}
$$

$$
\begin{array}{llllllll}
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \ell^{\prime-} & \ell^{\prime+} & +\mathrm{X} \\
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \ell^{-} & \ell^{+} & +\mathrm{X} \\
\mathrm{pp}(\rightarrow & \mathrm{ZZ}) & \rightarrow & \ell^{-} & \ell^{+} & \nu_{\ell^{\prime}} & \bar{\nu}_{\ell^{\prime}} & +\mathrm{X} \\
\mathrm{pp}\left(\rightarrow W^{+} \mathrm{W}^{-} / \mathrm{ZZ}\right) & \rightarrow & \ell^{-} & \ell^{+} & \nu_{\ell} & \bar{\nu}_{\ell} & +\mathrm{X}
\end{array}
$$

Dependence on cut $_{q_{T} / q}$ - inclusive ATLAS © 8TeV

\mathbf{q}_{T} subtraction at NLO

q_{T} subtraction at NNLO

