Heavy flavor production with the **ATLAS experiment at LHC**

Vincenzo Canale Università di Napoli "Federico II" and INFN

LHCP2016: LUND 12/6-18/6

tituto Nazionale Fisica Nucleare

Outline

- A. Introduction:
 - 1) General framework
 - 2) Experimental aspects
- B. Quarkonium states:
 - 1) J/ ψ and $\psi(2s)$ differential production at \sqrt{s} =7-8 TeV
 - 2) J/ ψ differential non prompt production at $\sqrt{s} = 13$ TeV
- C. Heavy flavour open states
 - 1) f_s/f_d determination at $\sqrt{s} = 7$ TeV
 - 2) B^{\pm} mass reconstruction in $B^{\pm} \rightarrow J/\psi K^{\pm}$ at $\sqrt{s} = 13 \text{ TeV}$
 - 3) $D^{*\pm}$, D^{\pm} and D_s^{\pm} production at $\sqrt{s} = 7$ TeV

D. Conclusions

A.1 General framework

 \rightarrow Heavy Flavor (HF) production is a crucial phenomenon to test QCD.

Charmonium production: (a) directly (*prompt*) by short lived QCD sources, (b) from decays of long-lived b-hadrons (*non-prompt*)

Non-Prompt production successfully described by : Fixed Order Next Leading Log (FONLL)

A.1 General framework

 \rightarrow Heavy quark (HQ) production is a crucial phenomenon to test QCD.

Charmonium production: (a) directly (*prompt*) by short lived QCD (sources, (b) from decays of long-lived b-hadrons (*non-prompt*)

Non-Prompt production successfully described by : Fixed Order Next Leading Log (FONLL)

Prompt quarkonium production is unique test ground: production "hard" scale + evolution via non-perturbative

Non Relativistic QCD prescription:

CO calculation + Long Distance Matrix Elements (from data)

- ightarrow improved agreement with data, but need coherent approach
- \rightarrow major interest in $\psi(2S)$ less affected by feed-down with respect to other states

A.1 General framework

 \rightarrow Heavy quark (HQ) production is a crucial phenomenon to test QCD.

Charmonium production: (a) directly (*prompt*) by short lived QCD (sources, (b) from decays of long-lived b-hadrons (*non-prompt*)

Non-Prompt production successfully described by : Fixed Order Next Leading Log (FONLL)

Prompt quarkonium production is unique test ground: production "hard" scale + evolution via non-perturbative

Non Relativistic QCD prescription:

CO calculation + Long Distance Matrix Elements (from data)

- \rightarrow improved agreement with data, but need coherent approach
- \rightarrow major interest in $\psi(2S)$ less affected by feed-down with respect to other states

Open HF production described by FONLL:

1) satisfactory for b

- 2) for c \rightarrow difficulty in matching different regimes ($p_T >> m_{Q_1} p_T \sim m_{Q_2}$, $p_T << m_{Q}$)
- \rightarrow HF@LHC data are very important in itself (new high p_T kinematic regions)
- → to understand significant background for EW, Higgs, NP sectors 16/06/16 V. Canale: Heavy Flavor production with the ATLAS experiment at LHC- LHCP 2016

A.2.1 Data samples

A.2 Experimental aspects

LHC machine:

• run-l:

```
5,1 fb<sup>-1</sup> at 7 TeV + 21.3 fb<sup>-1</sup> at 8 Tev
•run –II: 3.9 fb<sup>-1</sup> at 13 TeV (2015)
```


A.2.1 Data samples

16/06/16

A.2 Experimental aspects

A.2.3 Tracking, vertexing, mass and "proper" time fits

A.2.3 Tracking, vertexing, mass and "proper" time fits

mass $\rightarrow G_i$: Gaussian, B_i : Crystal Ball time $\rightarrow E_i$: exponential, \mathcal{R} : double Gaussian bkg $\rightarrow C_i$: Chebyshev, F : uniform

pseudo proper time

 $\Rightarrow \begin{cases} P : prompt component \\ NP : non-prompt from B-decays \end{cases}$

unbinned maximum likelihood fit in 2D

$$PDF(m,\tau) = \sum_{i} \kappa_i f_i(m) \cdot h_i(\tau) \otimes \mathcal{R}(\tau)$$

i	Туре	Source	$f_i(m)$	$h_i(\tau)$
1	J/ψ	Р	$\omega B_1(m) + (1-\omega)G_1(m)$	$\delta(\tau)$
2	J/ψ	NP	$\omega B_1(m) + (1-\omega)G_1(m)$	$E_1(\tau)$
3	ψ(2S)	Р	$\omega B_2(m) + (1-\omega)G_2(m)$	$\delta(\tau)$
4	ψ(2S)	NP	$\omega B_2(m) + (1-\omega)G_2(m)$	$E_2(\tau)$
5	Bkg	Р	F	$\delta(\tau)$
6	Bkg	NP	$C_1(m)$	$E_3(\tau)$
7	Bkg	NP	$E_4(m)$	$E_5(\tau)$

16/06/16

A.2.4 Cross section extraction

$$\frac{d^2\sigma(pp\to Q+X)}{dp_Tdy}\cdot Br(Q\to\mu\mu) = \frac{N_{corr}^{Q\to\mu\mu}}{\mathcal{L}\cdot\Delta p_T\cdot\Delta y}$$

 $\begin{cases} N_{corr}^{Q \to \mu\mu} : \text{signal yield corrected for efficiency and acceptance} \\ \mathcal{L} : \text{integrated luminosity corresponding to the sample} \\ \Delta p_T(y) : \text{interval bin of the differential variable} \end{cases}$

8 rapidity bins : $0 \le |y^{(\mu\mu)}| \le 2$ $\sqrt{s} = 7 T eV : 8 \le p_T^{(J/\psi)} \le 100 \text{GeV}$ $\sqrt{s} = 7 T eV : 8 \le p_T^{(\psi_{2s})} \le 60 \text{GeV}$ $\sqrt{s} = 8 T eV : 8 \le p_T^{(\mu\mu)} \le 110 \text{GeV}$ $\sqrt{s} = 13 T eV : 8 \le p_T^{(J/\psi)} \le 40 \text{GeV}$

A.2.4 Cross section extraction

$$\frac{d^2\sigma(pp\to Q+X)}{dp_Tdy}\cdot Br(Q\to\mu\mu) = \frac{N_{corr}^{Q\to\mu\mu}}{\mathcal{L}\cdot\Delta p_T\cdot\Delta y}$$

 $\begin{cases} N_{corr}^{Q \to \mu\mu} : \text{signal yield corrected for efficiency and acceptance} \\ \mathcal{L} : \text{integrated luminosity corresponding to the sample} \\ \Delta p_T(y) : \text{interval bin of the differential variable} \end{cases}$

 $\begin{array}{l} 8 \text{ rapidity bins}: \ 0 \leq |y^{(\mu\mu)}| \leq 2\\ \sqrt{s} = 7 \, TeV: 8 \leq p_T^{(J/\psi)} \leq 100 \text{GeV}\\ \sqrt{s} = 7 \, TeV: 8 \leq p_T^{(\psi_{2s})} \leq \ 60 \text{GeV}\\ \sqrt{s} = 8 \, TeV: 8 \leq p_T^{(\mu\mu)} \leq 110 \text{GeV}\\ \sqrt{s} = 13 \, TeV: 8 \leq p_T^{(J/\psi)} \leq 40 \text{GeV} \end{array}$

 $\epsilon(p_T^{(\mu)}, \eta^{(\mu)}) \rightarrow$ efficiencies (trigger, reconstruction,...) are estimated mainly with data driven methods to reduce uncertainties (tag and probe methods, etc...)

weight for each candidate :

$$w_i^{-1} = \epsilon_i^{(reco.)} \cdot \epsilon_i^{(trig.)} \cdot \mathcal{A}_i$$

V. Canale: Heavy Flavor production with the ATLAS experiment at LHC- LHCP 2016

 $\mathcal{A}(p_T^{(\mu\mu)} y^{(\mu\mu)})$: the probability for a candidate that both muons pass the fiducial selection ($p_{\tau}^{(\mu)}>4$ GeV, $|\eta^{(\mu)}|<2.3$) is estimated with simulation (generator + detector)

	Angular coefficients			
	$\lambda_{\theta} = \lambda_{\phi} = \lambda_{\theta\phi}$			
Isotropic (central value)	0	0	0	
Longitudinal	-1	0	0	
Transverse positive	+1	+1	0	
Transverse zero		0	0	
Transverse negative	+1	-1	0	
Off- $(\lambda_{\theta} - \lambda_{\phi})$ -plane positive	0	0	+0.5	
Off- $(\lambda_{\theta} - \lambda_{\phi})$ -plane negative	0	0	-0.5	

Acceptance corrections depend on the spin alignment at production:

 \rightarrow use the isotropic case and consider the envelope of maximum variations in case of different polarization states;

- \rightarrow dependence is reduced at high p_T;
- \rightarrow better to explore high p_T region (both theory and experiment)

 $J/\psi p_{\tau}$ [GeV]

Systematic uncertainties dominated :

- Muon trigger efficiency evaluation;
- Fit model parametrization

	7 TeV [%]			8 TeV [%]		
Source of systematic uncertainty	Min	Median	Max	Min	Median	Max
Luminosity	1.8	1.8	1.8	2.8	2.8	2.8
Muon reconstruction efficiency	0.7	1.2	4.7	0.3	0.7	6.0
Muon trigger efficiency <	3.2	4.7	35.9	2.9	7.0	23.4
Inner detector tracking efficiency	1.0	1.0	1.0	1.0	1.0	1.0
Fit model parameterizations	0.5	2.2	22.6	0.26	1.07	24.9
Bin migrations	0.01	0.1	1.4	0.01	0.3	1.5
Total	4.2	6.5	36.3	4.4	8.1	27.9

14

"Prompt" production compared with NLO-NRQCD:

ATLAS

Theory / Data

60 70 80 9010⁴

p_(µµ) [GeV]

00000.0.0.0.0.0.0

20

- \rightarrow fair agreement for the whole P_T range for both J/ ψ and ψ (2S)
- \rightarrow no observed dependence on rapidity in theory/data ratio

*i*th the ATLAS experiment at LHC- LHCP 2016

15

- "NON-Prompt" production compared with FONLL for b-production followed b \rightarrow " ψ "+X
- → for J/ ψ theory predicts "harder" spectra, for $\psi(2S)$ theory predicts "higher" yield
- → no observed dependence on rapidity in theory/data ratio

with the ATLAS experiment at LHC- LHCP 2016

Ratio of $\psi(2S)$ to J/ ψ for prompt and non-prompt

$$R^{p} = \frac{N_{\psi(2s)}^{p}}{N_{J/\psi}^{p}} \text{ and } R^{np} = \frac{N_{\psi(2s)}^{np}}{N_{J/\psi}^{np}}$$

Production Ratio Non-Prompt

→ R^p slightly increase with p_T while R^{np} is flat, both without strong dependence on either y or \sqrt{s}

B.2 J/ ψ differential non prompt production at $\sqrt{s} = 13$ TeV ATLAS-CONF-2015-030

B.2 J/ ψ differential non prompt production at $\sqrt{s} = 13$ TeV ATLAS-CONF-2015-030

 \rightarrow significant dependence on p_T (0.25 at 8 Gev \rightarrow 0.65 at 40 GeV) and no dependence on y

→ no significant change between Vs=7 TeV and Vs=13 TeV, contrary to significant difference between Vs=7 TeV and lower energies (ATLAS Vs=2.76 TeV AND CDF Vs=1.96 TeV)
16/06/16
V. Canale: Heavy Flavor production with the ATLAS experiment at LHC- LHCP 2016

C.1 f_s/f_d determination at $\sqrt{s} = 7$ TeV

Phys. Rev. Lett. 115, 262001 (2015)

b-fragmentation fractions
$$: f_i = \mathcal{P}rob[\overline{b} \to (\overline{b}q_i)]$$

 $q_i \equiv u, d, s, c \Rightarrow f_u + f_d + f_s + f_c + f_{baryon} = 1$

 \rightarrow important measurement for rare decays, searches, cross sections

$$\mathcal{L} = 2.47 \, fb^{-1}$$

at $\sqrt{s} = 7 \, \text{TeV} \Rightarrow \begin{cases} B_s^0 \to J/\psi(\mu^+\mu^-) \, \phi(K^+K^-) \\ B_d^0 \to J/\psi(\mu^+\mu^-) \, K^{*0}(K^+\pi^-) \end{cases}$

$$\frac{f_s}{f_d} = \frac{N_{B_s^0}}{N_{B_d^0}} \frac{\mathcal{B}\left(B_d^0 \to J/\psi \, K^{*0}\right)}{\mathcal{B}\left(B_s^0 \to J/\psi \, \phi\right)} \frac{\mathcal{B}\left(K^{*0} \to K^- \pi^+\right)}{\mathcal{B}\left(\phi \to K^+ K^-\right)} \, \mathcal{R}_{eff}$$

 \mathcal{R}_{eff} relative efficiencies (acceptance and selection) from MC sample \mathcal{B} branching fractions of the relevant decay modes (world averages)

p-fragmentation fractions :
$$f_i = \mathcal{P}rob[\bar{b} \to (\bar{b}q_i)]$$

 $q_i \equiv u, d, s, c \Rightarrow f_u + f_d + f_s + f_c + f_{baryon} = 1$

 \rightarrow important measurement for rare decays, searches, cross sections

$$\mathcal{L} = 2.47 \, fb^{-1} \\ \text{at } \sqrt{s} = 7 \, \text{TeV} \quad \Rightarrow \begin{cases} B_s^0 \to J/\psi(\mu^+\mu^-) \, \phi(K^+K^-) \\ B_d^0 \to J/\psi(\mu^+\mu^-) \, K^{*0}(K^+\pi^-) \end{cases}$$

$$\frac{f_s}{f_d} = \frac{N_{B_s^0}}{N_{B_d^0}} \frac{\mathcal{B}\left(B_d^0 \to J/\psi \, K^{*0}\right)}{\mathcal{B}\left(B_s^0 \to J/\psi \, \phi\right)} \frac{\mathcal{B}\left(K^{*0} \to K^- \pi^+\right)}{\mathcal{B}\left(\phi \to K^+ K^-\right)} \, \mathcal{R}_{eff}$$

 \mathcal{R}_{eff} relative efficiencies (acceptance and selection) from MC sample \mathcal{B} branching fractions of the relevant decay modes (world averages)

Observable	Value	σ
$N_{B_s^0}$	$6640 \pm 100 \pm 220$	3.3%
$N_{B_d^0}$	$36290 \pm 320 \pm 650$	1.8%
$\mathcal{R}_{\mathrm{eff}}$	$0.799 \pm 0.001 \pm 0.010$	1.3%
$\mathcal{B}(\phi \to K^+K^-)$	0.489 ± 0.005	1.0%
$\mathcal{B}(K^{*0} \to K^+\pi^-)$	0.66503 ± 0.00014	0.02%
Total		4.1%

Phys. Rev. Lett. 115, 262001 (2015)

$$\frac{f_s}{f_d} \cdot \frac{\mathcal{B}\left(B_s^0 \to J/\psi \,\phi\right)}{\mathcal{B}\left(B_d^0 \to J/\psi \,K^{*0}\right)} = 0.199 \begin{cases} \pm 0.004(\text{stat})\\ \pm 0.008(\text{syst.}) \end{cases}$$

 \rightarrow Ratio of \mathcal{B} s is better estimated from theory than from measurement, recent results (Phys. Rev. D89 (2014) 094010 and arXiv:1309.0313v2) has global 7.1% uncertainty:

$$\frac{\mathcal{B}\left(B_s^0 \to J/\psi \,\phi\right)}{\mathcal{B}\left(B_d^0 \to J/\psi \,K^{*0}\right)} = 0.83^{+0.03}_{-0.02}(\omega_B)^{+0.01}_{-0.00}(f_M)^{+0.01}_{-0.02}(a_i)^{+0.01}_{-0.02}(m_c)$$

$$\frac{f_s}{f_d} = 0.240 \pm 0.004(\text{stat.}) \pm 0.010(\text{syst.}) \pm 0.017(\text{theo.})$$

16/06/16

of momentum calibration of the ID of ATLAS

16/06/16

C.3 D^{*±}, D[±] and D[±] production at $\sqrt{s} = 7$ TeV Nucl.Phys. B907 (2016) 717 2010 data taking at $\sqrt{s} = 7$ TeV \rightarrow fiducial phase space region 3.5<p^(D)<100 GeV and $|\eta^{(D)}|<2.1$ two trigger data sample $\begin{cases} \log p_T \in [3.5, \ 20] \text{GeV} \Rightarrow \ Minimum \ bias/Random \rightarrow \mathcal{L} = 1.04 \ nb^{-1} \\ \operatorname{high} p_T \in [20, 100] \text{GeV} \Rightarrow \ Jet \ Trigger \ E \geq 15 \ \text{GeV} \rightarrow \mathcal{L} = 280 \ nb^{-1} \end{cases}$

Visible cross sections	Source	$\sigma^{vis}(D^{*\pm})$		$\sigma^{vis}(D^{\pm})$		$\sigma^{\rm vis}(D_s^{\pm})$	
in "low" and "high" $N(D)$		Low- $p_{\rm T}$	High-p _T	Low- $p_{\rm T}$	High-p _T	Low- $p_{\rm T}$	High-p _T
n regions: $\sigma_{pp \to D X} = \frac{1}{\Lambda - C}$	Trigger (δ_1)	-	+0.9%		+0.90%	-	+0.9%
p_{T} regions. $\mathcal{A} \cdot \mathcal{L} \cdot \mathcal{I}$	Tracking (δ_2)	+7.8%	±7.4%	±7.7%	±7.4%	±7.6%	±7.4%
- 'A from MC sample	D selection (δ_3)	+2.8%	+1.7%	+1.6%	+0.9%	+2.6%	+1.1%
- \mathscr{B} world average	Signal fit (δ_4)	±1.3%	±0.9%	±1.3%	±1.5%	±6.4%	±5.3%
Systematic uncertainties dominated :	Modelling (δ_5)	+1.0%	+2.7%	+2.3%	+2.9%	+1.7 %	+2.8%
• Tracking (detector material in MC).	Size of MC sample (δ_6)	±0.6%	±0.9%	±0.8%	±0.8%	±2.9%	±3.1%
 Luminosity and B for D 	Luminosity (δ_7)	+3.5%	±3.5%	±3.5%	±3.5%	±3.5%	±3.5%
Eutimosity and \mathcal{D} for D_s	Branching fraction (δ_8)	±1.5%	±1.5%	±2.1%	±2.1%	±5.9%	±5.9%

Visible cross sections	Source	$\sigma^{\rm vis}$	(D*±)	σ^{vis}	(D^{\pm})	σ^{vis}	(D_s^{\pm})
in "low" and "high" $ N(D)$		Low- $p_{\rm T}$	High- $p_{\rm T}$	Low- $p_{\rm T}$	High-p _T	$Low-p_T$	High-p _T
n regions: $\sigma_{pp \to D X} = \frac{1}{\Lambda - C - R}$	Trigger (δ_1)	-	+0.9%		+0.9 0%		+0.9%
\mathcal{P}_{T} regions. $\mathcal{A} \cdot \mathcal{L} \cdot \mathcal{D}$	Tracking (δ_2)	+7.8%	±7.4%	±7.7%	±7.4%	±7.6%	±7.4%
- 'A from MC sample	D selection (δ_3)	+2.8%	+1.7%	+1.6%	+0.9%	+2.6%	+1.1%
- \mathcal{B} world average	Signal fit (δ_4)	±1.3%	±0.9%	±1.3%	±1.5%	±6.4%	±5.3%
Systematic uncertainties dominated :	Modelling (δ_5)	+1.0%	+2.7%	+2.3%	+2.9% -2.4	+1.7%	+2.8% -2.4
 Tracking (detector material in MC); 	Size of MC sample (δ_6)	±0.6%	±0.9%	±0.8%	±0.8%	±2.9%	±3.1%
 Luminosity and B for D 	Luminosity (δ_7)	+3.5%	±3.5%	±3.5%	±3.5%	±3.5%	±3.5%
Eutimosity and \mathcal{D} for \mathcal{D}_{s}	Branching fraction (δ_8)	±1.5%	±1.5%	±2.1%	±2.1%	±5.9%	±5.9%

	$\sigma^{ m vis}$	$(D^{*\pm})$	$\sigma^{ m vis}$	(D^{\pm})	$\sigma^{\rm vis}(D_s^{*\pm})$		
Range	low- $p_{\rm T}$	high-p _T	$low-p_T$	high-p _T	low- $p_{\rm T}$	high-p _T	
[units]	[µb]	[nb]	[µb]	[µb] [nb]		[nb]	
ATLAS	331 ± 36	988 ± 100	328 ± 34	888 ± 97	160 ± 37	512 ± 104	
GM-VFNS	340 ⁺¹³⁰ -150	1000^{+120}_{-150}	350^{+150}_{-160}	980 ⁺¹²⁰ -150	147 ⁺⁵⁴ -66	470^{+56}_{-69}	
FONLL	202+125	753^{+125}_{-104}	174^{+105}_{-66}	617+105	-	-	
POWHEG+PYTHIA	158^{+179}_{-85}	600^{+300}_{-180}	134^{+148}_{-70}	480^{+240}_{-130}	62^{+64}_{-31}	225^{+114}_{-69}	
POWHEG+HERWIG	137^{+147}_{-72}	690^{+380}_{-160}	121^{+129}_{-64}	580^{+280}_{-140}	51^{+50}_{-25}	268^{+107}_{-62}	
MC@NLO	157^{+125}_{-72}	980^{+460}_{-290}	140^{+112}_{-65}	810^{+390}_{-260}	58^{+42}_{-25}	345 ⁺¹⁷⁵ -87	

Comparison of visible cross sections with predictions:

→agreement with GM-VFNS; → for FONLL, POWHEG, MC@NLO the central values are lower than data but are consistent including theoretical uncertainties due to: μ scales, m_Q, PDFs, f_{Q→D}

Extrapolation from "visible" \rightarrow total phase space \rightarrow total charm cross sections with FONLL for low p_T sample and only for D^{*+} and D^+

 $\sigma_{c\bar{c}}^{tot} = 8.6 \pm 0.3 \text{(stat.)} \pm 0.7 \text{(syst.)} \pm 0.3 \text{(lum.)} \pm 0.2 \text{(ff.)}_{-3.4}^{+3.8} \text{(extr.)} \text{ mb (ATLAS)}$ $\sigma_{c\bar{c}}^{tot} = 8.5 \pm 0.5 \text{(stat.)}_{-2.4}^{+1.0} \text{(syst.)} \pm 0.3 \text{(lum.)} \pm 0.2 \text{(ff.)}_{-0.4}^{+5.0} \text{(extra.)} \text{ mb (ALICE)}$

Differential cross section in p_{T} and η for D^{**} and D^{*}

Comparison of data with theoretical predictions: - in general theory below data but consistent within uncertainties; - the shape of p_T spectra well reproduced by

FONLL, POWHEG while MC@NLO slightly harder; - η shape for high p_T of MC@NLO prediction differs from the data;

- GM-VFSN predictions agree both in shape and normalization

16/06/16

Conclusions

- LHC performances allowed ATLAS to make high precision measurements in the production of quarkonium (J/ ψ , ψ_{2s} ,) and HF open state (b, D⁺).
- At LHC new kinematical regions (e.g. high p_T) are available to deeply test the predictions of the different models for QCD.
- Expect to fully exploite run-II to confirm and probe new interesting phenomena in HF production even in challenging data-taking conditions for HF physics