Heavy-flavour production results with CMS

The latest of 8TeV and 13TeV results

Nazar Bartosik
(Istituto Nazionale di Fisica Nucleare di Torino)
for the CMS collaboration
Outline

- Motivation for heavy-flavour measurements
- Experimental setup
- Overview of the latest results by CMS:
 1. B^+ hadron production cross sections
 CMS-PAS-BPH-15-004
 13 TeV
 2. Quarkonium production cross sections
 CMS-PAS-BPH-15-005
 13 TeV
 3. Observation of $Y(1S)$ pair production
 CMS-PAS-BPH-14-008
 8 TeV
Motivation

Heavy-flavour production is an important process to study.

In view of the Standard Model measurements:
- advancements in b/c-hadron spectroscopy
- verification of *pQCD* and *effective field theory* predictions

In view of BSM searches:
- CP-violation studies
- probing/constraining *new physics* scenarios
Experimental setup: CMS

Compact Muon Solenoid: perfect detector for measuring muons

Muons – main experimentally measured signature in HF physics

Combination of subdetectors to identify + measure muon properties

$|\eta| < 2.4$

$\sigma_{\mu\mu}: 0.6\% - 1.5\%$

Run1 data: $\sim 20.7 \text{ fb}^{-1}$

Run2 data: varies among analyses
Dedicated triggers: optimised for different analyses

CERN-CMS-DP-2016-016
Experimental setup: resonant peaks

Using 2016 data
CERN-CMS-DP-2016-016

CMS
Preliminary

\[B^+ \rightarrow \mu^+ \mu^- K^+ \]

\[J/\psi \]

\[\psi(2S) \]

 events/7 MeV

\[0.9 \text{ fb}^{-1} (13 \text{ TeV}, 2016) \]

\[\sigma = 26 \text{ MeV} \]
\[p_T^{\mu^+\mu^-} > 10 \text{ GeV} \]
\[|y^{\mu^+\mu^-}| < 1.25 \]

 CMS
Preliminary

\[Y(1S/2S/3S) \]

 CMS
Preliminary

\[\phi \]
\[\psi' \]
\[B_s \]
\[\gamma \]

0.9 fb\(^{-1}\) (13 TeV, 2016)

\[\sigma \geq 63 \text{ MeV} \]
\[p_T > 8 \text{ GeV} \]
\[|y^{\mu^+\mu^-}| < 1.25 \]
\[|\eta| < 0.9 \]

\[0.9 \text{ fb}^{-1} (13 \text{ TeV}, 2016) \]

\[0 \]

\[10 \]

\[10^2 \]

\[1 \]

\[10^3 \]

\[10^4 \]

\[10^5 \]

\[10^6 \]

\[10^7 \]

\[10^8 \]

\[10^9 \]

\[10^{10} \]

\[\mu^+\mu^- \text{ invariant mass [GeV]} \]

\[\omega \]

\[\phi \]

\[J/\psi \]

\[\psi' \]

\[B_s \]

\[\gamma \]

\[Y \]

\[\phi \]

\[\psi' \]

\[B_s \]

\[\gamma \]

\[Y \]

\[\text{low mass double muon} + \text{track} \]
\[\text{double muon inclusive} \]

\[Z \]
Using 2016 data
CERN-CMS-DP-2016-016

Experimental setup: resonant peaks

$B_d^0 \rightarrow J/\psi K_s^0$

$\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

$B^+ \rightarrow \mu^+ \mu^- K^+$

$\phi(1020)$

CMS Preliminary

$B^0(J/\psi K^0_s)$

$B^0(J/\psi K_s)$

$\Lambda_b^0(J/\psi \Lambda)$

Trigger paths

- ϕ
- J/ψ
- ψ'
- B_s
- Y
- low mass double muon + track
double muon inclusive
B$^+$ CROSS SECTION

CMS-PAS-BPH-15-004

• probing b-hadron production at higher energies wrt to Run1 measurements

• important test of QCD
B\(^+\) production: selection

Using data with 50\,ns bunch spacing: \(\mathcal{L} \approx 50.8\,\text{pb}^{-1} \)

Exclusive decay channel: \(B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+ \)

Candidate selection:

Displaced triggered dimuon vertex

- **L1:** \(2 \times |\eta|^{\mu} < 1.6 \quad \text{OR} \quad \geq 1 \times |p_T^{\mu}| > 10\,\text{GeV} \)
- **HLT:** \(2 \times |\eta|^{\mu} < 2.4 \quad \text{AND} \quad |p_T^{\mu}| > 4\,\text{GeV} \)
- \(2.9 < m_{\mu\mu} < 3.3\,\text{GeV} \)

\(J/\psi \) candidate: \(\mu\mu \) pair with \(|p_T| > 10\,\text{GeV} \)

\(K^+ \) candidate: track with \(|p_T| > 1\,\text{GeV} \)
B$^+$ production: cross-section

Differential measurement: as function of Q ($Q = p_T$ or $|y|$ of B$^+$)

\[
\frac{d\sigma(pp \rightarrow B^+ X)}{dQ} = \frac{N_{\text{sig}}}{2A\epsilon \cdot B\mathcal{L} \cdot \Delta Q}
\]

signal yield in bin ΔQ

result for a single charge

acceptance \times efficiency

A: from B$^+$ MC simulations

ϵ: data-driven from inclusive $J/\psi \rightarrow \mu\mu$

$\text{BR}(B^+ \rightarrow J/\psi K^+) \times \text{BR}(J/\psi \rightarrow \mu\mu)$

13 TeV

Nazar Bartosik

Heavy-flavour production at CMS
Signal yields: extracted from invariant mass of B^+ candidates

Extended unbinned likelihood fit in each bin of the measurement

- **signal component**
 - double gaussian
- **combinatorial bkg.**
 - exponential function
- **misreconstructed bkg.**
 - error function
Comparison of Data, MC and FONLL calculations at 7 TeV and 13 TeV

Theory predictions in reasonable agreement with the measurement

Improved precision of FONLL predictions at 13 TeV
QUARKONIUM CROSS SECTION

CMS-PAS-BPH-15-005

• testing the factorisation hypothesis of NRQCD

• extending the p_T reach of the previous measurement using Run1 data
Quarkonium production: selection

Using data with 25 ns bunch spacing: \(\mathcal{L} \approx 2.7 \, \text{fb}^{-1} \)

5 S-wave charmonium states: \(J/\psi \), \(\psi(2S) \), \(Y(1/2/3S) \)

Candidate selection:

High-\(p_T \) \(\mu\mu \) pair in central rapidity
- L1: \(2 \times |\eta|^{\mu} < 1.6 \)
- HLT: \(|p_T|^{\mu\mu} > 10 \, \text{GeV} \) \([J/\psi] \)
 \(|p_T|^{\mu\mu} > 8 \, \text{GeV} \) \([\psi(2S), Y(nS)] \)
- specific \(m_{\mu\mu} \) windows for each state

Only \(\mu\mu \) flying away from each other
\(\Delta \varphi < 0 \)
\(\Delta \varphi = \varphi(\mu^+) - \varphi(\mu^-) \)

-3.8 T

B field
Quarkonium production: cross section

Double-differential measurement: as function of p_T and $|y|$

Signal yield in a 2D bin

Maximum likelihood fit to $m_{\mu\mu}$ spectra

$$B(Q \rightarrow \mu^+ \mu^-) \times \frac{d^2\sigma^Q}{dp_T dy} = \frac{N^Q(p_T, |y|)}{\mathcal{L} \cdot \Delta p_T \Delta y} \cdot \left(\frac{1}{\epsilon(p_T, |y|)A(p_T, |y|)} \right)$$

J/ψ	Bin width
$\psi(2S)$	Average inverse acceptance \times efficiency
$Y(1S)$	A: from MC simulations
$Y(2S)$	ϵ: data-driven using Tag&Probe
$Y(3S)$	$\epsilon_{\mu\mu} = \epsilon_{\mu 1} \cdot \epsilon_{\mu 2} \cdot \rho \quad \leftarrow$ for high-$p_T \mu\mu$ correlations
Quarkonium production: signal yields

Signal yields: extracted from invariant mass of meson candidates

Extended unbinned likelihood fit in each bin of the measurement

- **background**
- exponential function

Signal yields:

- **J/ψ**
 - $20 < p_T < 21$ GeV
 - $|y| < 0.3$
 - $\chi^2/\text{ndf} = 0.98$

- **$\psi(2S)$**
 - $22.5 < p_T < 25$ GeV
 - $|y| < 0.3$
 - $\chi^2/\text{ndf} = 0.79$

Graphs:

- Crystal-Ball + Gaussian fit
- 2.4 fb$^{-1}$ (13 TeV)
- 2.7 fb$^{-1}$ (13 TeV)

Y(1/2/3S)

- CMS Preliminary
- $22 < p_T < 24$ GeV
- $|y| < 0.6$
- $\chi^2/\text{ndf} = 1.0$

CMS Preliminary

- Total fit
- Background
Quarkonium production: results

Shapes consistent across rapidity regions
Quarkonium production: results

Radial excitations relative to ground states

2.4 ψ fb$^{-1}$, 2.7 $\psi(2S)$ fb$^{-1}$ (13 TeV)

$\psi(2S) / J/\psi$

$|y| < 1.2$

$\psi(2S) / \psi$

CMS Preliminary

$\psi(2S)$ / J/ψ

$|y| < 1.2$

ψ fb$^{-1}$ (13 TeV)

$Y(2S) / Y(1S)$

$|y| < 1.2$

$Y(3S) / Y(1S)$

CMS Preliminary

$Y(1S)$

$Y(2S) / Y(1S)$

$Y(3S) / Y(1S)$

$|y| < 1.2$
Quarkonium production: results

Charmonium non-prompt fraction: 13 TeV vs 7 TeV

p_T reach significantly extended with the 13 TeV measurement
Charmonium production: results

Comparison of the measurements at 7 TeV and 13 TeV

Same p_T dependence in Run1 and Run2

Increase of cross-section consistent with expectations from the PDF evolution
Y(1S) PAIR OBSERVATION

CMS-PAS-BPH-14-008

• never observed before (evidence by DØ)
• first step in searches for tetra-quarks
• important test of QCD predictions
Y(1S)-pair observation: selection

Using data from Run1: \(\mathcal{L} \approx 20.7 \text{ fb}^{-1} \)

Searching for: \(2 \times Y(1S) \rightarrow \mu\mu \)

Candidate selection:

\(\geq 4 \) muons

- HLT: \(\geq 1 \) pair with \(8.5 < m_{\mu\mu} < 11 \text{ GeV} \)
- total 0 electric charge
- oppositely charged \(\rightarrow \) kinematic fit

Y(1S) candidate:

\(|y| < 2.0 \quad p_T < 50 \text{ GeV}\)
Two discriminating variables: higher $m_{\mu\mu}$, lower $m_{\mu\mu}$

2D unbinned likelihood fit over the integrated $|y|$ region

- **signal**: $2 \times$ Crystal-Ball
- **combinatorial bkg.**: 1st order Chebyshev Polynomial

![Graphs showing 2D unbinned likelihood fit](image)

Nazar Bartosik

Heavy-flavour production at CMS
Y(1S)-pair observation: results

Inclusive cross-section measured: $|y| < 2.0 \quad p_T < 50$ GeV

Signal yield: 38 ± 7 events

Total cross section: $68.8 \pm 12.7 \text{stat} \pm 7.4 \text{syst} \pm 2.8 \text{BR} \text{ pb}$

assuming isotropic $Y(1S) \rightarrow \mu\mu$ decays

Expected to change by up to $+36\%$ (longitudinal) or -38% (transverse) in case of extreme polarisation scenarios
Summary

Differential B^+ cross section measured at 13 TeV
- extended p_T reach up to 100 GeV
- reasonable agreement with FONLL and Pythia8 predictions

Double-differential quarkonia cross sections at 13 TeV
- consistent with 7 TeV results
- awaiting comparison to theoretical predictions

First observation of double $Y(1S)$ production at 8 TeV
- inclusive cross section measured (statistics limited)
- first step in search for tetra-quarks

Presented measurements constitute an important input for improving our understanding of QCD
Thank you for attention