Heavy Flavour Production results at 13 TeV with LHCb

Max Neuner
on behalf of the LHCb collaboration
Heidelberg University, Physikalisches Institut

LHCP 2016, Lund
June 13 – 18
Motivation for production measurements

- cross-section in unique forward region with 13 TeV pp collisions
- constrain gluon pdf in low x
- test production and fragmentation models
- input to tune simulation

heavy flavour production results at 13 TeV:
- J/ψ production using $3.05\ \text{pb}^{-1}$: JHEP10(2015)172
- prompt charm production using $4.98\ \text{pb}^{-1}$: JHEP03(2016)159
- data collected with Turbo stream: saw talk by Lucia Grillo, June 13th 17:35:
 “Novel concepts for trigger, calibration & alignment, and data processing with LHCb”
Analysis strategy

\[\frac{d^2 \sigma(pp \to X)}{dy \, dp_T} = \left[\frac{N(X \to f)}{\mathcal{L} \cdot \epsilon \cdot \mathcal{B}(X \to f) \cdot \Delta p_T \cdot \Delta y} \right] \]

- compute \(\sigma \) in bins of \(p_T \) and \(y \)
- \(N(X) \) signal yield
- \(\mathcal{L} \) integrated luminosity
- \(\mathcal{B}(X \to f) \) branching fraction

- \(\epsilon \) efficiencies
 - selection from simulation
 - data-driven methods:
 - PID
 - trigger
 - tracking
J/ψ production cross-sections at $\sqrt{s} = 13$ TeV

- separate prompt J/ψ and J/ψ-from-b using the pseudo-decay-time

$$t_Z = \frac{d_Z \cdot M_{J/\psi}}{p_Z}$$

- kinematic range:
 - $p_T < 14$ GeV/c; $2 < y < 4.5$
 - 2D fit to mass and t_Z

signal: Crystal Ball
bkg: exponential

prompt signal: double Gaussian
from-b signal: exponential * double Gaussian

JHEP10(2015)172
Results: J/ψ cross-sections at $\sqrt{s} = 13$ TeV

prompt

J/ψ-from-b

integrated cross-section $p_T < 14$ GeV/c and $2 < y < 4.5$:

$$\sigma(\text{prompt}) = 15.30 \pm 0.03 \pm 0.86 \, \mu\text{b}$$
$$\sigma(\text{from-b}) = 2.34 \pm 0.01 \pm 0.13 \, \mu\text{b}$$

$b\bar{b}$ cross-section 4π-extrapolated*:

$$\sigma(pp \rightarrow b\bar{b} X) = 515 \pm 2 \pm 53 \, \mu\text{b}$$

* $\mathcal{B}(b \rightarrow J/\psi X) = 1.16 \pm 0.10 \%$; naïve PYTHIA 6 extrapolation
J/ψ production at 13 TeV: comparison with theory

- **NRQCD** (Shao et al., JHEP 05 (2015) 103):
 - hadronisation of $c\bar{c}$ state described by long-distance matrix elements (LDME) according to spin configuration
 - LDME determined from CDF data

- **FONLL** (Cacciari et al., JHEP 05 (1998) 007, arXiv:1507.06197)
 - fixed-order next-to-leading logarithms
 - match NLO QCD with NLL in the limit $p_T >> m(q)$

- measurements agree with models within uncertainties

Graphs

- **Prompt J/ψ**
 - $d\sigma/dp_T$ vs. p_T (GeV/c)
 - LHCb prompt J/ψ, $2.0 < y < 4.5$
 - NRQCD, $2.0 < y < 4.5$

- **J/ψ from b**
 - $d\sigma/dp_T$ vs. p_T (GeV/c)
 - LHCb J/ψ from b, $2.0 < y < 4.5$
 - FONLL, $2.0 < y < 4.5$
Systematic uncertainties

- Luminosity dominant systematic uncertainty
- Muon: tag-and-probe method
- Large only for few bins at acceptance boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>3.9</td>
</tr>
<tr>
<td>Hardware trigger</td>
<td>0.1 – 5.9</td>
</tr>
<tr>
<td>Software trigger</td>
<td>1.5</td>
</tr>
<tr>
<td>Muon ID</td>
<td>1.8</td>
</tr>
<tr>
<td>Tracking</td>
<td>1.1 – 3.4</td>
</tr>
<tr>
<td>Radiative tail</td>
<td>1.0</td>
</tr>
<tr>
<td>J/ψ vertex fit</td>
<td>0.4</td>
</tr>
<tr>
<td>Signal mass shape</td>
<td>1.0</td>
</tr>
<tr>
<td>$\mathcal{B}(J/\psi \to \mu^+ \mu^-)$</td>
<td>0.6</td>
</tr>
<tr>
<td>p_T, y spectrum</td>
<td>0.1 – 5.0</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>0.3 – 5.0</td>
</tr>
<tr>
<td>t_z fit (J/ψ-from-b only)</td>
<td>0.1</td>
</tr>
</tbody>
</table>
J/ψ production ratio 13/8 TeV: comparison with theory

prompt

- NRQCD: not all uncertainties included

- measurements of ratios not well described by models for low y

![Graphs](JHEP10(2015)172)
Prompt charm production at $\sqrt{s} = 13$ TeV

• reconstruct D^0, D^+, D_s^+ and $D^{*+} \rightarrow D^0\pi^+$

• separate prompt charm from secondary charm by using impact parameter (IP) significance (D^0 has lifetime itself)

• kinematic range:
 • $p_T < 15$ GeV/c; $2 < y < 4.5$
 • sequent fits to mass and $\ln \chi_{IP}^2$

signal: Crystal Ball + Gaussian
bkg: linear

JHEP03(2016)159

signal: asymmetric Gaussian + exp tail
secondary: Gaussian
Systematic uncertainties and models

- Luminosity dominant systematic uncertainty
- Only few bins above 10%
Results: prompt charm production cross-sections at 13 TeV

double-differential D^0 cross-section

JHEP03(2016)159

Theory models:

- **POWHEG+NNPDF3.0L**
 (Gauld et al., JHEP06(2013)064)
 - POWHEG matched to Pythia 8 parton showers

 - match NLO QCD with NLL in the limit $p_T >> m(q)$
 - tuned to c-fractions from e^+e^- colliders

 - NLO predictions are convolved with frag functions fitted to data from e^+e^- colliders

- measurements agree with models within uncertainties
Results: ratio of 13/7 TeV and integrated cross-sections

- measurement of ratios not well described by models

\[
\sigma(pp \rightarrow c\bar{c}X)_{(p_T < 8 \text{ GeV}/c, 2.0 < y < 4.5)} = 2940 \pm 3 \pm 180 \pm 160 \text{ \(\mu\)b}
\]
Results: ratio of 13/7 TeV and integrated cross-sections

- combination of D^0 and D^+ measurements:

\[
\sigma(pp \rightarrow c\bar{c} X)_{(p_T < 8 \text{ GeV}/c, \ 2.0 < y < 4.5)} = 2940 \pm 3 \pm 180 \pm 160 \mu b
\]

For Run II at $\mathcal{L} = 4 \cdot 10^{32} \text{s}^{-1} \text{cm}^2$:

- 40 kHz of $b\bar{b}$ production!
- 1.2 MHz of $c\bar{c}$ production!

numbers: thanks to Patrick Spradlin

- measurement of ratios not well described by models
Conclusions

- heavy flavour production cross-section at $\sqrt{s} = 13$ TeV with LHCb
 - in the range of $p_T < 14 \text{ (8) GeV/c}$ and $2.0 < y < 4.5$
 - as a function of p_T and y for
- prompt J/ψ and J/ψ-from-b

 \[
 \sigma(\text{prompt } J/\psi) = 15.30 \pm 0.03 \pm 0.86 \text{ \(\mu b)}
 \]
 \[
 \sigma(J/\psi \text{ from-b)} = 2.34 \pm 0.01 \pm 0.13 \text{ \(\mu b)}
 \]

- prompt charm \[J\text{HEP03(2016)159}\]

- absolute cross-section measurement agree with models within uncertainties
- cross-section ratio 13/8(7) TeV not well described

- analysis of $b\bar{b}$ cross-section using semi-leptonic decays in the pipeline

\[
\sigma(pp \rightarrow b\bar{b} X) = 515 \pm 2 \pm 53 \text{ \(\mu b)}
\]
\[
\sigma(pp \rightarrow c\bar{c} X)(p_T < 8 \text{ GeV/c, } 2.0 < y < 4.5) = 2940 \pm 3 \pm 180 \pm 160 \text{ \(\mu b)}
\]

*naïve PYTHIA 6 extrapolation
Results: J/ψ cross-sections at $\sqrt{s} = 13$ TeV

prompt

J/ψ cross-sections at $\sqrt{s} = 13$ TeV, $L_{\text{int}} = 3.05$ pb$^{-1}$

J/ψ-from-b

J/ψ cross-sections at $\sqrt{s} = 13$ TeV, $L_{\text{int}} = 3.05$ pb$^{-1}$

JHEP10(2015)172
8TeV Results: J/ψ cross-sections at $\sqrt{s} = 8$ TeV

JHEP06(2013)064
Max Neuner (Heidelberg University): Heavy Flavour Production results at 13 TeV with LHCb

prompt

![Graph of prompt J/ψ](image)

- **LHCb Prompt J/ψ**

J/ψ-from-b

![Graph of J/ψ-from-b](image)

- **LHCb J/ψ-from-b**
- **FONLL**
- **FONLL, ± 1σ**
prompt

J/ψ production at 13 TeV: comparison with theory

- NRQCD (Shao et al., JHEP 05 (2015) 103)
 - includes LDME uncertainties which are dominant for absolute measurement
 - not included are contributions from renorm/factorization scale, relativistic corrections, charm mass and PDF uncertainties

J/ψ-from-b

- FONLL (Cacciari et al., JHEP 05 (1998) 007, arXiv:1507.06197)
 - theoretical uncertainties of b-quark mass, renorm/factorization scale, gluon PDF uncertainty
Max Neuner (Heidelberg University): Heavy Flavour Production results at 13 TeV with LHCb
Max Neuner (Heidelberg University): Heavy Flavour Production results at 13 TeV with LHCb
Max Neuner (Heidelberg University): Heavy Flavour Production results at 13 TeV with LHCb
details of charm models

• POWHEG+NPDF3.0L: obtained with POWHEG matched to Pythia8 parton showers; can be improved by re-weighting the NNPDF3.0L set such that FONLL calculations match LHCb’s 7TeV charm cross-section; this improves uncertainties for the gluon distribution at small x

• FONLL: match NNPDF3.0 NLO PDF with all-order resummation to next-to-leading log (NLL) accuracy in the limit $p_T < m(q)$; take hadronisation probabilities from e^+e^- colliders

• general-mass variable-flavor-number (GMVFNS): provided only for $p_T > 3\text{ GeV}/c$ due to scale uncertainties; take NLO predictions of charm production and convolute with fragmentation functions describing the $c \rightarrow H_c$ transitions that are normalised to the respective total probabilities; the fragmentation functions are results of fits to the production measurement at e^+e^- colliders
Integrated charm cross-sections at 13 TeV

combine D^0 and D^+ measurement:

$$\sigma(pp \to c\bar{c}X)(p_T < 8 \text{ GeV}/c, 2.0 < y < 4.5) = 2940 \pm 3 \pm 180 \pm 160 \mu b$$

JHEP03(2016)159