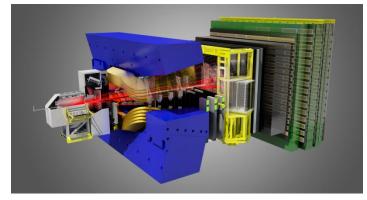


Heavy Flavour Production results at 13 TeV with LHCb

Max Neuner on behalf of the LHCb collaboration

Heidelberg University, Physikalisches Institut

LHCP 2016, Lund June 13 – 18



Motivation for production measurements

- cross-section in unique forward region with 13 TeV pp collisions
- constrain gluon pdf in low x
- test production and fragmentation models
- input to tune simulation

- heavy flavour production results at 13 TeV:
 - J/ψ production using 3.05 pb^{-1} : JHEP10(2015)172
 - prompt charm production using 4.98 pb^{-1} : JHEP03(2016)159
 - data collected with Turbo stream: saw talk by Lucia Grillo, June 13th 17:35:

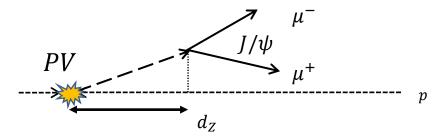
"Novel concepts for trigger, calibration & alignment, and data processing with LHCb"

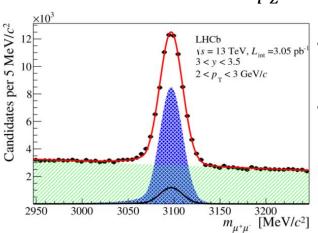
Analysis strategy

$$\frac{d^2\sigma(pp\to X)}{dy\ dp_T} = \left[\frac{N(X\to f)}{\mathcal{L}\cdot\boldsymbol{\epsilon}\cdot\,\mathfrak{B}(X\to f)\cdot\Delta p_T\cdot\Delta y}\right]$$

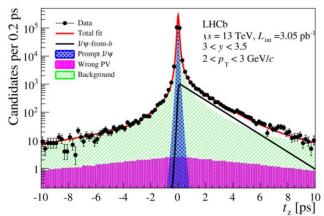
- ullet compute σ in bins of p_T and y
- N(X) signal yield
- £ integrated luminosity
- $\mathfrak{B}(X \to f)$ branching fraction

- *e* efficiencies
 - selection from simulation
 - data-driven methods:
 - PID
 - trigger
 - tracking



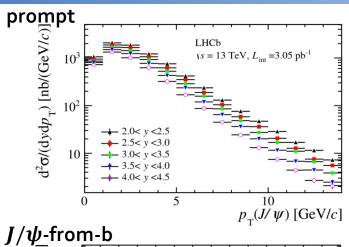

I/ψ production cross-sections at \sqrt{s} = 13 TeV

• separate prompt J/ψ and J/ψ -from-b using the pseudo-decay-time

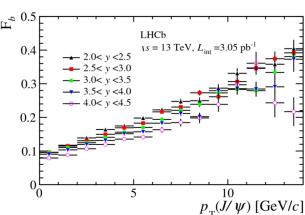

$$t_Z = \frac{d_Z \cdot M_{J/\psi}}{p_Z}$$

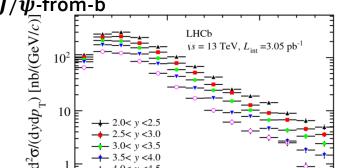
- kinematic range:
 - $p_T < 14$ GeV/c; 2 < y < 4.5
- 2D fit to mass and t_Z

JHEP10(2015)172


signal: Crystal Ball bkg: exponential

prompt signal: double Gaussian from-b signal: exponential * double Gaussian




Results: J/ψ cross-sections at \sqrt{s} = 13 TeV

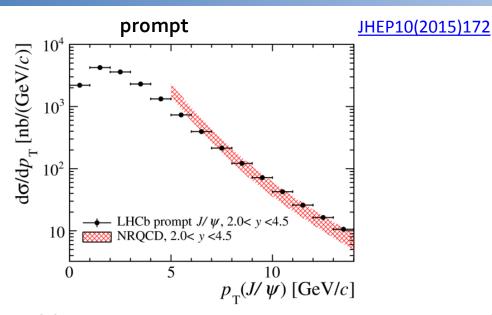
→ 4.0< y <4.5

integrated cross-section p_T < 14 GeV/c and 2 < y < 4.5:

$$\sigma$$
(prompt) = 15.30 ± 0.03 ± 0.86 µb σ (from-b) = 2.34 ± 0.01 ± 0.13 µb

bb cross-section 4π -extrapolated*:

$$\sigma(pp \rightarrow b\bar{b} X) = 515 \pm 2 \pm 53 \mu b$$


* $\mathfrak{B}(b \to I/\psi X) = 1.16 \pm 0.10 \%$; naïve PYTHIA 6 extrapolation

 $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c]

J/ψ production at 13 TeV: comparison with theory

- NRQCD (Shao et al., <u>JHEP 05 (2015) 103</u>):
 - hadronisation of $c\bar{c}$ state described by long-distance matrix elements (LDME) according to spin configuration
 - LDME determined from CDF data
- measurements agree with models within uncertainties

FONLL (Cacciari et al., <u>JHEP 05 (1998) 007</u>, <u>arXiv:1507.06197</u>)

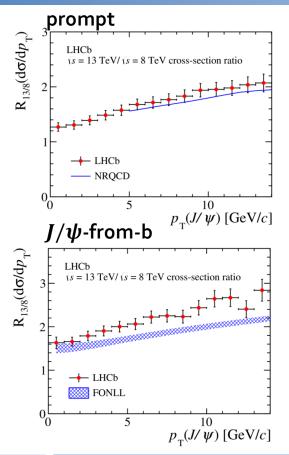
 $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c]

- fixed-order next-to-leading logarithms
- match NLO QCD with NLL in the limit $p_T >> m(q)$

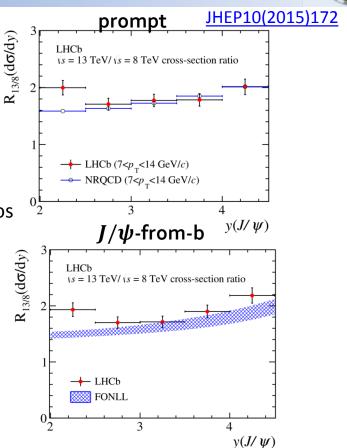
Systematic uncertainties

 luminosity dominant systematic uncertainty

• muon: tag-and-probe method

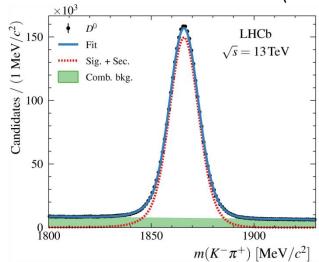

large only for few bins at acceptance boundary

	Source	Systematic uncertainty (%)
\longrightarrow	Luminosity	3.9
	Hardware trigger	0.1 - 5.9
>	Software trigger	1.5
~	Muon ID	1.8
	Tracking	1.1 - 3.4
	Radiative tail	1.0
	$J\!/\psi$ vertex fit	0.4
	Signal mass shape	1.0
	$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	0.6
\rightarrow	p_{T},y spectrum	0.1 - 5.0
\rightarrow	Simulation statistics	0.3 - 5.0
	t_z fit $(J/\psi$ -from- b only)	0.1


J/ψ production ratio 13/8 TeV: comparison with theory

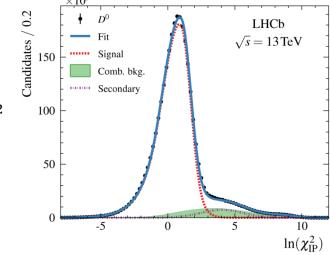
 NRQCD: not all uncertainties included

 measurements of ratios not well described by models for low y



Prompt charm production at \sqrt{s} = 13 TeV

- reconstruct D^0 , D^+ , D_s^+ and $D^{*+} \rightarrow D^0 \pi^+$
- separate prompt charm from secondary charm by using impact parameter (IP) significance (D⁰has lifetime itself)


- kinematic range:
 - $p_T < 15$ GeV/c; 2 < y < 4.5

IP

pp

• sequent fits to mass and $\ln \chi_{IP}^2$

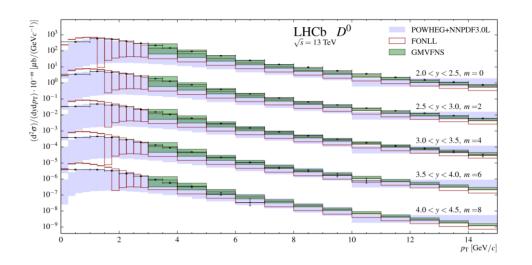
JHEP03(2016)159

 $D^{\,0}$

signal: asymmetric Gaussian + exp tail secondary: Gaussian

Systematic uncertainties and models

		Uncertainties $(\%)$				
		D^0	D^+	D_s^+	D^{*+}	
	Luminosity	3.9				
 luminosity dominant systematic 	Tracking	3-5	5 - 17	4 - 18	5 - 20	
uncertainty	Branching fractions	1.2	2.1	5.8	1.5	
• only few bins above 10 %	→ Simulation sample size	2 - 24	4 - 55	3-55	2 - 21	
·	Simulation modelling	2	1	1	1	
	PID sample size	0-2	0 - 1	0-2	0 - 1	
	PID binning	0 - 44	0 - 10	0 - 20	0 - 15	
	PDF shapes	1–6	1-5	1-2	1-2	

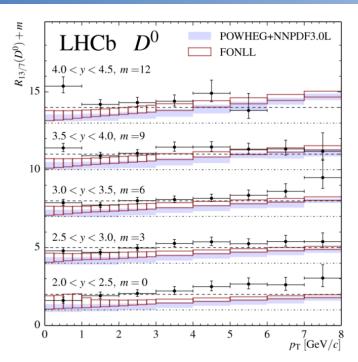


Results: prompt charm production cross-sections at 13 TeV

double-differential D^0 cross-section

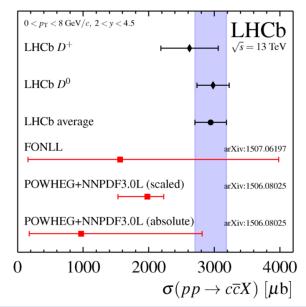
JHEP03(2016)159

measurements agree with models within uncertainties


Theory models:

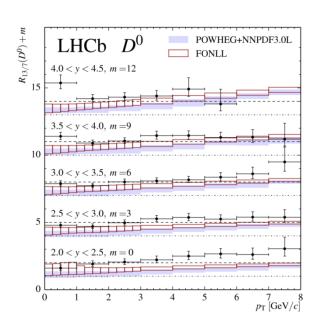
- POWHEG+NNPDF3.0L
 - (Gauld et al., <u>JHEP06(2013)064</u>)
 - POWHEG matched to Pythia 8 parton showers
- FONLL (Cacciari et al., <u>Eur.Phys.J.C75(2015)no.12,610</u>)
 - match NLO QCD with NLL in the limit $p_T >> m(q)$
 - tuned to c-fractions from e^+e^- colliders
- General-mass variable-flavor-number scheme (GMVFNS) (Spiesberger et al., <u>Eur. Phys. J. C</u> (2012) 72:2082)
 - NLO predictions are convolved with frag functions fitted to data from e⁺e⁻ colliders

Results: ratio of 13/7 TeV and integrated cross-setions



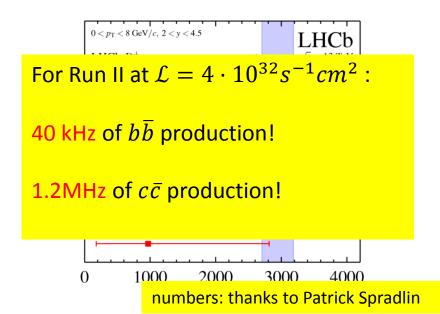
measurement of ratios not well described by models

combine D^0 and D^+ measurement:


$$\sigma(pp \rightarrow c\bar{c} X)_{(p_T < 8 \text{ GeV/c}, 2.0 < y < 4.5)}$$

= 2940 ± 3 ± 180 ± 160 µb

Results: ratio of 13/7 TeV and integrated cross-setions



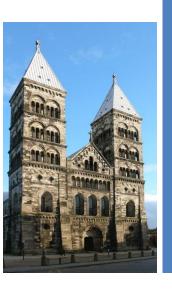
 measurement of ratios not well described by models

combine D^0 and D^+ measurement:

$$\sigma(pp \to c\bar{c} X)_{(p_T < 8 \text{ GeV/c}, 2.0 < y < 4.5)}$$

= 2940 ± 3 ± 180 ± 160 µb

Conclusions


- heavy flavour production cross-section at \sqrt{s} = 13 TeV with LHCb
 - in the range of p_T < 14 (8) GeV/c and 2.0 < y < 4.5
 - ullet as a function of p_T and y for
- prompt J/ψ and J/ψ -from-b $\frac{JHEP10(2015)172}{JHEP10(2015)172}$
- prompt charm <u>JHEP03(2016)159</u>

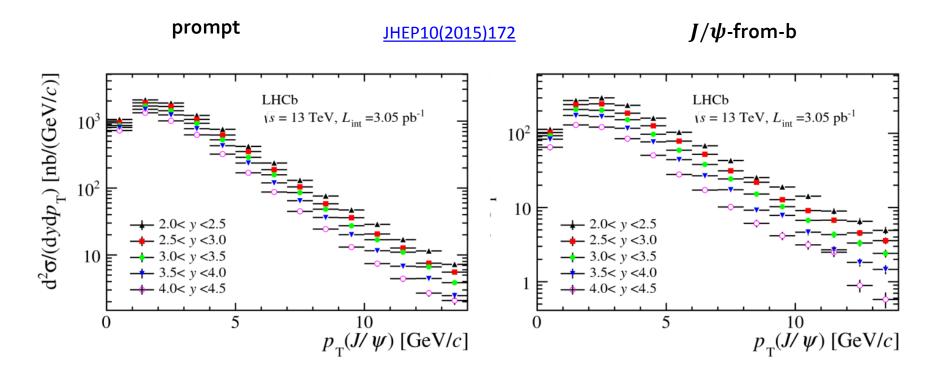
$$\sigma$$
(prompt J/ψ) = 15.30 ± 0.03 ± 0.86 μb $\sigma(J/\psi \text{ from-b})$ = 2.34 ± 0.01± 0.13 μb

$$\sigma(pp \rightarrow b\overline{b} X) = 515 \pm 2 \pm 53 \mu b$$
 *

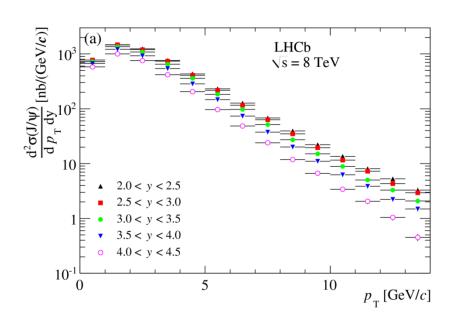
$$\sigma(pp \to c\bar{c} X)_{(p_T < 8 \text{ GeV/c}, 2.0 < y < 4.5)}$$

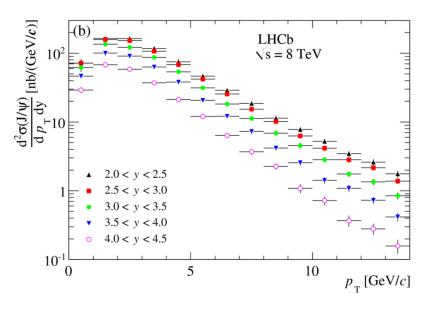
= 2940 ± 3 ± 180 ± 160 µb

- absolute cross-section measurement agree with models within uncertainties
- cross-section ratio 13/8(7) TeV not well described
- analysis of b ar b cross-section using semi-leptonic decays in the pipeline

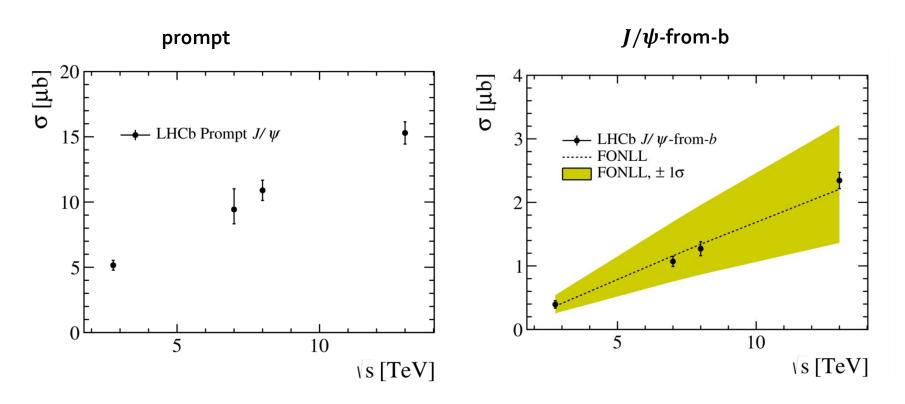

BACKUP

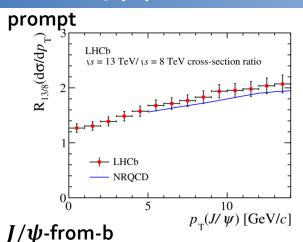
Results: J/ψ cross-sections at \sqrt{s} = 13 TeV



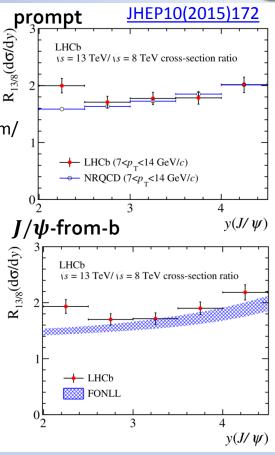


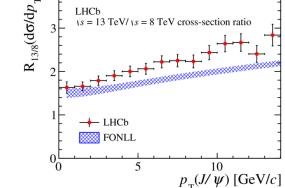
8TeV Results: J/ψ cross-sections at \sqrt{s} = 8 TeV


JHEP06(2013)064



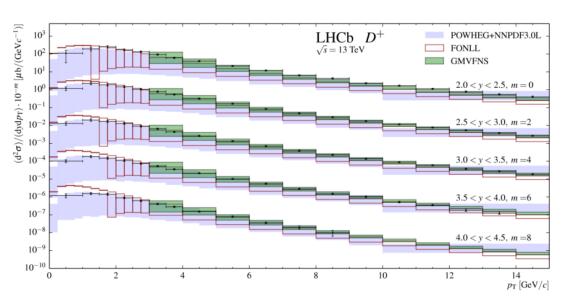
J/ψ production at 13 TeV: comparison with theory

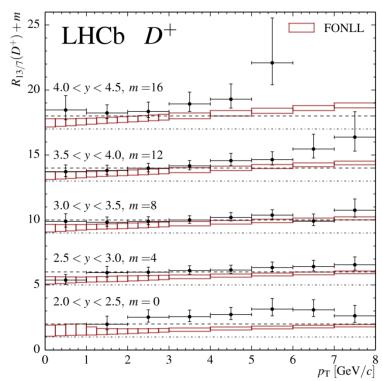



NRQCD (Shao et al., <u>JHEP 05 (2015) 103</u>)

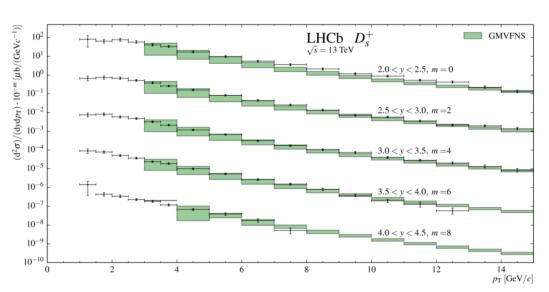
- includes LDME uncertainties which are dominant for absolute measurement
- not included are contributions from renorm/ factorization scale, relativistic corrections, charm mass and PDF uncertainties

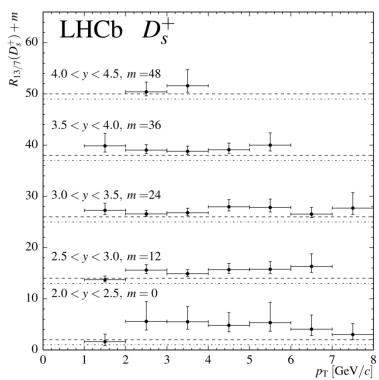
theoretical uncertainties of b-quark mass, renorm/factorization scale, gluon PDF uncertainty

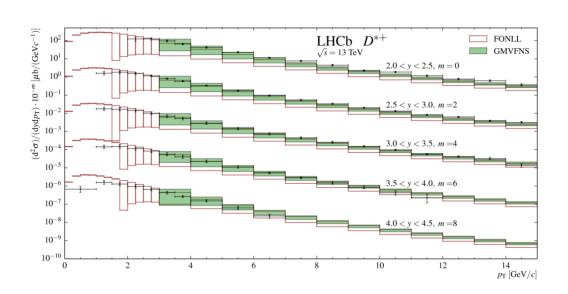

 $\sqrt{s} = 13 \text{ TeV}/\sqrt{s} = 8 \text{ TeV cross-section ratio}$

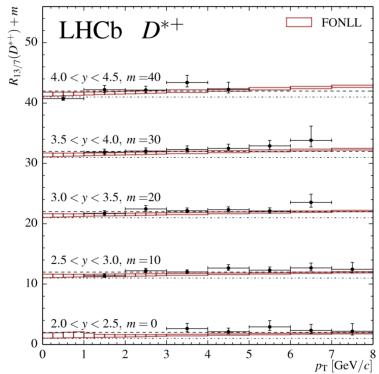

19

LHCb



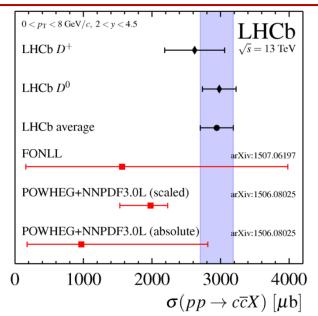


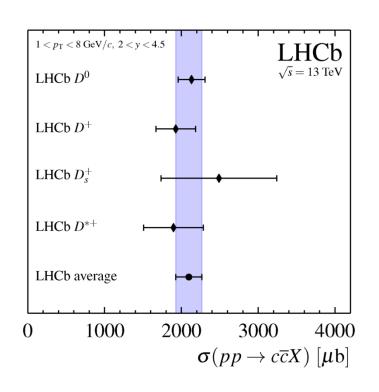




details of charm models

- POWHEG+NPDF3.0L: obtained with POWHEG matched to Pythia8 parton showers; can be improved by re-weighting the NNPDF3.0L set such that FONLL calculations match LHCb's 7TeV charm cross-section; this improves uncertainties for the gluon distrubution at small x
- FONLL: match NNPDF3.0 NLO PDF with all-order resummation to next-to-leading log (NLL) accuracy in the limit $p_T < m(q)$; take hadronisation probabilities from e^+e^- colliders
- general-mass variable-flavor-number (GMVFNS): provided only for $p_T > 3~GeV/c$ due to scale uncertainties; take NLO predictins od charm production and convolute with fragmentation functions describing the $c \to H_c$ transitions that are normalised to the respective total probabilities; the fragmentation functions are results of fits to the production measurement at e^+e^- colliders


Integrated charm cross-sections at 13 TeV



JHEP03(2016)159

combine D^0 and D^+ measurement:

$$\sigma(pp \to c\bar{c} X)_{(p_T < 8 \text{ GeV/c}, 2.0 < y < 4.5)}$$

= 2940 ± 3 ± 180 ± 160 µb

