New results in LU/LFV tests with LHCb

Jessica Prisciandaro on behalf of the LHCb collaboration

LHCP Lund, 13-18 June 2016

European Research Council

Established by the European Commission

Outline

- Lepton flavour and universality violation
- The LHCb experiment
- LFV searches at LHCb:
 - Search for $B^{0}(s) \rightarrow e^{\pm} \mu^{\mp}$
 - Search for $D^0 \rightarrow e^{\pm} \mu^{\mp}$
 - Search for $\tau^{\pm} \rightarrow \mu^{+} \mu^{-} \mu^{\pm}$
- Tests of lepton flavour universality at LHCb:
 - Measurement of R(D*)
 - Measurement of $R_{\ensuremath{\mathsf{K}}}$
- Conclusions

In the Standard Model:

 Couplings of the gauge bosons to leptons are independent of
 the lepton flavour BF differences of semileptonic decays in e, μ and τ are only due to phase space and helicity-suppressed contribution

 Lepton flavour violation is allowed in the SM only with massive neutrinos

BF~ $O(10^{-40})$ or smaller

Observation of LFV processes and LFU violations would be a clear sign of new physics

LHCb can play a crucial role in such searches and in putting new limits on BSM theories

The LHCb detector

<u>PRL 111, 141801 (2013)</u>

Predicted in BSM theories: heavy singlet Dirac neutrinos, SUSY, Pati-Salam model^[1]

6

Analysis strategy:

- BDT selection
- Simultaneous fit to invariant mass in BDT bins
- [♠] normalisation channel $B^0 \rightarrow K^+ \pi^-$
- CLs method to extract the limit

One order of magnitude better than previous best limit from $CDF^{[1]}$ $\mathcal{B}(B_s^0 \to e^{\pm}\mu^{\mp}) < 1.1 \times 10^{-8} \text{ at } 90\% \text{ CL}$

 $\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 2.8 \times 10^{-9} \text{ at } 90\% \text{ CL}$

Lower bounds on the leptoquark masses in Pati-Salam model

 $\mathcal{M}_{LQ}(B_s^0 \to e^{\pm} \mu^{\mp}) > 107 \text{ TeV/c}^2 \text{ at } 90\% \text{ CL}$

 $\mathcal{M}_{LQ}(B^0 \to e^{\pm} \mu^{\mp}) > 135 \text{ TeV/c}^2 \text{ at } 90\% \text{ CL}$

[1]T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 201801 (2009).

 $D^0 \rightarrow e^{\pm} \mu^{\mp}$

- Forbidden in the SM
- Predicted in various BSM theories[1] (SUSY with RPV, multiple Higgs doublets theory, SM with extra fermions):
 - BF(D⁰→e[±]µ[∓]) up to O(10⁻⁶)
- Best limit previous LHCb:

 $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 2.6 \times 10^{-7} \text{ at } 90\% \text{ CL (Belle^{[2]})}$

[2] <u>Belle collaboration, Phys. Rev. D81 (2010) 091102</u> 9

- BDT to separate real D* decays from combinatorial background
- BDT output split in three bins simultaneously fitted
- 2D fit of m(D⁰) and $\Delta m = m(D^{*+}) m(D^{0})$

$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}$$

$$D^{0}(\rightarrow K^{+}\pi^{+})\pi^{+}$$

$$D^{*+} \to D^0 (\to e^{\pm} \mu^{\mp}) \pi^+$$

(most signal-like bin)

LHCb

10r

8

6

4**H**

didates / [1.7 MeV/c²]

- No signal observed
- Upper limit with CL_s method, via:

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\pm}) = \frac{N_{e\mu} \epsilon_{e\mu}}{N_{K\pi} \epsilon_{K\pi}} \times \mathcal{B}(D^0 \to K^- \pi^+)$$

 $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$ (word's best upper limit)

$\tau^- \to \mu^+ \mu^- \mu^+$

Within the Standard Model:

- Allowed with massive neutrinos
- BF extremely low ~ $O(10^{-40})$

Beyond the Standard Model:

- NP particles in loops increase decay rates
- tree level decays allowed

Large τ production cross section at LHCb ($\sigma \sim 80\mu b$)

Normalisation channel:

 $D_{\rm s}^- \to \phi(\to \mu\mu)\pi^-$

Data set:

LHCb Run1 data set (3fb⁻¹)

Analysis strategy:

- Cut based preselection
- Background discrimination:
 - MVA for 3-body topological decays
 - MVA for muon identification
 - τ invariant mass
- Simultaneous fit to invariant mass sidebands in bins of M_{3body} and M_{PID}

- No significant excess over the expected background observed
- CLs method to extract the limit

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8} \text{ at } 90\% \text{ CL}^{0.1}$$

[2] K. Hayasaka et al., Phys. Lett. B 687 (2010) 139

Babar^[1]: $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 3.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$ Belle^[2]: $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 2.1 \times 10^{-8} \text{ at } 90\% \text{ CL}$

Combined limit improves!

- SM prediction very clean: 0.252 ± 0.003
- Many NP models foreseen enhanced coupling to the third generation (ex. additional charged Higgs)
- SaBar reported deviations from SM of 2.7 σ and 2.0 σ for R(D*) and R(D)

Challenges:

- 3 neutrinos, no narrow peaks to fit ($\bar{B^0} o D^{*+} \tau^- (o \mu^- \nu_\tau \bar{\nu}_\mu) \bar{\nu}_\tau$)
- Main backgrounds: $B \rightarrow D^{**} \mu \nu$, $B \rightarrow D^* H_C X$ with $H_C \rightarrow \mu \nu_{\mu} X$

(analysis with $\tau^- \rightarrow 3\pi$ in progress)

- Same selection procedure for the two channels: $D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}+$ muon
- 3D simultaneous template fit to:
 - $q^2 = |p_B p_D|^2$
 - Ε*_μ
 - $m^2_{miss} = |p_B p_D p_\mu|^2$
- All uncertainties on the template shapes incorporated in the fit

Misidentified µ

18

$R(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$

- b→s flavour-changing neutral currents
- Expected to be 1 in the SM (theoretical uncertainty O(10⁻³))
- Highly sensitive to NP (e.g neutral and heavy Z' boson)
 Run I dataset, q²[1-6] GeV²/c⁴

Measurement relative to $B \rightarrow J/\psi(I^+I^-)K$ to reduce systematic uncertainties

$$R_{K} = \left(\frac{N_{K\mu\mu}}{N_{Kee}}\right) \left(\frac{N_{J/\psi(ee)K}}{N_{J/\psi(\mu\mu)K}}\right) \left(\frac{\varepsilon_{Kee}}{\varepsilon_{K\mu\mu}}\right) \left(\frac{\varepsilon_{J/\psi(ee)K}}{\varepsilon_{J/\psi(\mu\mu)K}}\right)$$

- Diagonal bands due radiative tails
- J/ψ and ψ (2s) peaks

- B→(e⁺e⁻)K events split in three trigger categories
- Bremsstrahlung effects accounted for in the invariant mass shape definition
- Only one category for $B \rightarrow (\mu^+ \mu^-)K$ events
- Dominant sources of uncertainties:
 - parametrisation of the J/ψ (e⁺e⁻)K mass
 - trigger efficiencies estimation

Best measurement of the $B \rightarrow e^+e^-K$ branching fraction (compatible with SM predictions):

$$\mathcal{B}(B^+ \to e^+ e^- K^+) = 1.56^{+0.19}_{-0.15} (\text{stat})^{+0.06}_{-0.05} (\text{syst}) \times 10^{-7}$$

Looking forward to RUN II data analysis!

Conclusion

- Test of LU and LFV are crucial for New Physics searches
- LHCb demonstrate to play a crucial role for such studies
 - Best UL for $B^{0}(s) \rightarrow e^{\pm}\mu^{\mp}$ set
 - Best UL for $D^0 \rightarrow e^{\pm} \mu^{\mp}$ set
 - Most precise measurement of $R(D^{\ast})$ and $R_{\rm K}$
- Many other analysis currently ongoing in LHCb

Looking forward to new results and to analysis with LHC RUN II data!!