Proton Proton Cross-Sections and Properties of Diffractive Physics

E. Radermacher on behalf of the TOTEM collaboration

14 june 2016

pp Cross-Sections and Properties of Diffractive Physics

SUMMARY

- Totem and Atlas-Alfa Detectors
- Forward charged particle pseudorapidity density
- Hadronic elastic scattering
- Non exponential elastic differential cross-section
- Coulomb nuclear interference region
- Total cross-section
- Diffraction
- Upgrade

Experimental Setup at IP5 before LS1

Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger

Roman Pots

Roman Pot = movable box inside the beam pipe, housing silicon detectors. Detectors can approach the beam centre to < 1mm when the beams are stable.

66 μm pitch 20 μm resolution

150 µm window

Stack of 10 silicon strip detectors (5 pairs back to back)

Alfa Detector

- 2 x 2 stations~ 240 m from ATLAS IP
- 8 fiber detectors with2 x 10 layers of 0.5 mmquadratic fibers
- Movable in vertical direction
- Resolution ~ 35 μm

Measurement of the forward charged particle dN/dη

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt(s) = 8 TeV using a displaced interaction point Eur. Phys. J. C (2015) 75:126; arXiv:1411.4963

Diffractive and Electromagnetic Processes

Diffractive

Electromagnetic

Elastic Scattering (ES), $\approx 25 \,\mathrm{mb}$

Single Diffraction (SD), $\approx 10 \,\mathrm{mb}$

Double Diffraction (DD), $\approx 5 \,\text{mb}$

Central Diffraction (CD), $\approx 1 \,\text{mb}$

Photoproduction

Elastic Scattering – from ISR to Tevatron

- Minimum in pp, shoulder in p̄p
 → different mix of processes
- Minimum / shoulder moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
 - → RMS impact parameter larger

Some Lessons on Hadronic Elastic pp Scattering

s=7 TeV, 80 μb⁻¹

-t [GeV²]

Elastic fit

(Fit-data)/data

At low |t|: nearly exponential decrease:

$$B_{7TeV} = (19.89 \pm 0.27) \text{ GeV}^{-2}$$

$$B_{8 TeV}$$
 = (19.90 \pm 0.30) GeV⁻²

Extrapolation to t=0 \rightarrow σ_{tot} via optical theorem:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \rho^2} \frac{d\sigma_{el}}{dt} \Big|_{t=0}$$
 $\sigma_{\text{tot}} = 98.58 \pm 2.23 \text{ mb}$ $\sqrt{s} = 7\text{Te}$

Old trends for increasing s are confirmed:

- "shrinkage of the forward peak": minimum moves to lower |t|
- forward exponential slope B increases

Non-Exponential Elastic pp Differential Cross-Section

High statistics data set (β *=90m,2012): 7 M elastic events 0.027 GeV² < |t| < 0.2 GeV² , i.e. Coulomb effects negligible

Quite exponential at the first glance, but a closer look reveals ...

Plotting relative deviation from exponential and fitting $d\sigma/dt = A e^{-B(t)|t|}$ with B(t) = b, or B(t) = b, t

$$d\sigma/dt = A e^{-B(t)|t|}$$
, with $B(t) = b_0$ or $B(t) = b_0 + b_1 t$ or $B(t) = b_0 + b_1 t + b_2 t^2$

N_b	χ^2/ndf	p-value	significance
1	117.5/28 = 4.20	$6.1 \cdot 10^{-13}$	7.2σ
2	29.3/27 = 1.09	0.35	0.94σ
3	25.5/26 = 0.98	0.49	0.69σ

Pure exponential form ($N_b = 1$) excluded at 7.2 σ significance.

Nucl. Phys. B 899 (2015) 527

Elastic Scattering in the Coulomb-Nuclear Interference Region

Measurement down to $|t| \sim 6 \times 10^{-4} \text{ GeV}^2$:

- β * = 1000 m optics
- Roman Pot approach to $\frac{3}{\sigma}$ from the beam

A $e^{-B(t)|t|}$

hadronic phase as function of t: implications on behaviour of elastic scattering in impact parameter space: preferentially central or peripheral?

Combined β *= 1km & 90 m data

- exclude Simplified West & Yennie interference formula (requiring purely exponential hadronic ampl.)
- have constraining power on:
 - hadronic amplitude
 - hadronic phase → impact parameter picture
- \rightarrow measurement of $\rho = \cot \arg F^{H}(t=0)$
- \rightarrow previous σ_{tot} measurements (neglecting CNI) confirmed.

CERN-PH-EP-2015-325

Elastic Scattering in the Coulomb-Nuclear Interference Region

Both fits with central and peripheral phase describe the data and give the same result for ρ

TOTEM (\sqrt{s} = 8 TeV): ρ = 0.12 ± 0.03

In 2016:
$$\beta^* = 1000 \text{ m}, \sqrt{s} = 13 \text{ TeV}$$

From the Elastic to the Total Cross-Section

Optical Theorem:

$$\sigma_{\text{tot}}^2 \propto \left[\Im F_{\text{el, had}}(t=0)\right]^2 = \frac{1}{1+\rho^2} \left|F_{\text{el, had}}(t=0)\right|^2 \quad \text{with } \rho = \frac{\Re F_{\text{el, had}}}{\Im F_{\text{el, had}}} \Big|_{t=0}$$

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \rho^2} \frac{d\sigma_{el}}{dt} \bigg|_{t=0}$$

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different bunch intensities,
- different methods with different external inputs.

8 TeV: only luminosity independent method (no external lumi. meas. available) $\sigma_{tot}(8 \text{ TeV}) = (101.7 \pm 2.9) \text{ mb}$

pp Cross-Section Measurements

Central Diffraction ("Double Pomeron Exchange")

 p_x , p_y from t, ϕ P_z from ξ

 $X = high E_T jets, Z, WW, ZZ, ...$ measured in central CMS detectors

kinematic redundancy proton system – central system, e.g. $M_{\mathbf{X}}^2 = \xi_1 \xi_2 s$

- both protons survive with momentum losses ξ_1, ξ_2
- diffractive mass M in the centre
- 2 rapidity gaps $\Delta \eta_1$, $\Delta \eta_2$

$$\Delta \eta_{1,2} = -\ln \xi_{1,2}, \quad M^2 = \xi_1 \, \xi_2 \, s$$

Joint data taking CMS + TOTEM:

kinematic redundancy between protons and central diffractive system

$$M_{CMS} = M_{TOTEM}(pp)$$
 ?

RP Upgrade Projects at IP5

Hit maps of simulated diffractive events for <u>2 optics configurations</u>

$$\beta^* = 0.55 \text{ m} \text{ (low } \beta^* = \text{standard at LHC)}$$

 β * = 90 m (special development for RP runs)

Operation at low β^* (< 1 m), **high luminosity** (O(fb⁻¹/day)), standard runs diffractive masses > ~300 GeV

750 GeV resonance?

CMS-TOTEM Precision Proton Spectrometer (CT-PPS): Tracking and Timing detectors in horizontal Roman Pots

Operation at high β^* (19 m, 90 m, > 1 km), **Low - medium lumi.** (< 6 pb⁻¹/day), special runs **all** diffractive masses

Low-mass glueballs?

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment

Tracking and thin diamond timing detectors in vertical Roman Pots

[CERN-LHCC-2014-020]

Diamond Detector Layout and Prototype Time Resolution

TOTEM

Segmentation follows the diffractive hit distribution.

Test Hybrid 1: 1 large pixel (C = 2 pF)

Test Hybrid 2: 4 small strip pixels (C = 0.29 - 0.6 pF)

Resolution measured at LHC

Efficiency measured > 98%

Back-Up

Soft Single Diffraction at LHC

0.05

SD events tagged by rapidity gap, ξ from diffractive system:

$$\xi = \frac{M_X^2}{s} = \frac{\sum \left(E^i + p_Z^i\right)}{\sqrt{s}}$$

→ Single diffractive cross section integrated over -5.5 < log { < -2.5:

 $\sigma_{\text{vis}}^{SD} = 4.27 \pm 0.04(stat.) + 0.65 / -0.58(syst.)$ mb for 1.1 < log(M_X/GeV) < 2.6