Recent QCD Results from the Tevatron

LHCP 2016, Lund, Sweden

Gavin Hesketh, UCL / University of Manchester

1) Gauge bosons

2) Hadrons

3) Multiple Parton Scatters

Science & Technology Facilities Council

Tevatron

2

Tevatron Run II: 2001-2011

- collide protons and antiprotons
- c.o.m. energy 1.96 TeV

CDF & D0:

- general purpose experiments
- Integrated Iumi ~ 10fb⁻¹ each

Use colourless objects:

- photons, leptonic decays of W

Probe the underlying QCD in a range of different processes: - exclusively, differentially, high multiplicity,

Gauge bosons

Trigger on & select isolated EM clusters:

- $-p_{T} > 30 \text{ GeV}, |\eta| < 1.0$
- trigger thresholds 25 70 GeV
- low p_{τ} triggers pre-scaled!

Photon ID based on:

- shower shapes, isolation, tracking
- photon fraction varies from 50-80%

Leptonic W decays

- electron or muon with pT> 25 GeV
- transverse mass > 40 GeV
- jets with $E_{\tau} > 25 \text{ GeV}$

Unfold to particle level using SVD method

- channels then combined using BLUE

Inclusive Photon

5

G. Hesketh

CDF Run II Preliminary

Comparison with:

- Pythia 6.216 (LO), CTEQ5L PDF
- Sherpa 1.4.1, CT10 PDF
 - 0-3 jets @ LO
- MCFM NLO, fragmentation at LO
 - underlying event correction ~0.91
 - derived using Pythia 6.216

CDF Note 11180

W+jets

G. Hesketh

6

Result compared to Alpgen+Pythia6, using CTEQ5L PDF

- ren & fact scale = mW2 + pTW2, varied up and down by a factor of 2

Part 2: identified hadrons

Exclusive $\pi\pi$ production:

p

n

- sensitive to double pomeron exchange

 $\Lambda, \Xi \& \Omega$ Asymmetry:

- testing hadron production models

Exclusive $\pi^{+}\pi^{-}$

G. Hesketh

8

Sensitive to double pomeron exchange:

- IP IP $\rightarrow \pi^+\pi^-$
- IP = pomeron: colour singlet, mainly gluons; test scalar and tensor glueballs

Select two charged particles with $|\eta|$ <1.3, pT>0.4 GeV

- rapidity gap 1.3< $|\eta|$ <5.9
- analysis carried out at 1.96 and 0.9 TeV

 $M(\pi\pi)$ (MeV/c²)

Asymmetry of Λ production:

- are Λ ($\overline{\Lambda}$) produced favourably close to the p (anti-p) beam direction?

A Asymmetry

- measure "rapidity loss" = y(proton) – y(Λ) or y(antiproton) - y($\overline{\Lambda}$)

Measurement in three channels

- $pp \rightarrow \Lambda(\overline{\Lambda})X$
- pp $\rightarrow J/\psi \Lambda(\overline{\Lambda})X$
- pp $\rightarrow \mu \Lambda(\overline{\Lambda})X$

Reconstruct $\Lambda \rightarrow p\pi$ at displaced vertex

New D0 result consistent with picture:

- real asymmetry
- appears independent of beam energy
- may result for strange quark coalescing with diquark from proton remnants

Phys. Rev. D93, 032002 (2016)

G. Hesketh

10

$\sum_{\mathbf{UCL}} \mathbf{E} \stackrel{\mathbf{C}}{\mathbf{A}} \boldsymbol{\Omega} \stackrel{\mathbf{Asymmetry}}{\mathbf{Asymmetry}}$

G. Hesketh

11

Rapidity y in CM

Ľ

Phys. Rev. D 93, 112001 (2016)

For AFB (B⁻, B⁺) see Phys. Rev. Lett. 114, 051803 (2015). For AFB (Λ_{b} , $\overline{\Lambda}_{b}$) see Phys. Rev. D 91, 072008 (2015).

Part 3: double parton interactions

m = 2 for distinguishable processes

σ_{eff} depends on distribution of quarks and gluons in the proton - should transfer to any process

Select J/ ψ and Y decaying to muons (muon pT>2, $|\eta|$ <2)

- and require mass windows: $2.4-4.2\ \text{GeV}$, and $8-12\ \text{GeV}$

Fit 2D mass plot to extract simultaneous J/ ψ + Y cross section:

- 12.0 \pm 3.8 (stat) \pm 2.8 (syst) events
 - first evidence of simultaneous production (3.2σ) !
- $\sigma(J/\psi + \Upsilon) = 27 \pm 9$ (stat) ± 7 (syst) fb

G. Hesketh

13

Extrapolate $\sigma(\Upsilon)$ from previous D0 measurement: $\sigma(\Upsilon) = 2.1 \pm 0.3$ (syst) nb

cτ, cm

0.1

0.05

-0.05

0

-0.1

 $\sigma_{\rm eff} = 2.2 \pm 0.7 ({\rm stat.}) \pm 0.9 ({\rm syst.}) {\rm mb}$

Phys. Rev. Lett. 116, 082002

Diphoton + dijet

G. Hesketh 15

Extract fraction of DPI using ΔS

- require $\Delta S < X$, for 7 values of X
- average:

 $f_{\rm DP}^{\rm avg} = 0.213 \pm 0.061 ({\rm stat}) \pm 0.028 ({\rm syst})$

$f_{\rm DP}$	$f_{\rm DI}$	EffRatio	Purity	JES	$R_{\rm c}\sigma_{\rm hard}$	SystTotal	StatTotal	Total
31.0	18.7	7.1	7.2	13.2	2.6	40.2	6.9	40.8

Phys. Rev. D. 93, 052008

Ł

DPI Summary

J/ ψ + Y consistent with J/ ψ J/ ψ , significantly lower than other processes

G. Hesketh

16

Ł

- dominated by gg initial state, others dominated by qq/qg
- indication gluons occupy smaller spacial region than quarks?

Conclusion

G. Hesketh 17

New results:

- inclusive photon CDF Note 11180
- W+jets CDF Note 11167
- exclusive $\pi\pi$ production PRD 91, 091101, 2015
- Λ asymmetry Phys. Rev. D93, 032002
- Ξ and Ω asymmetry Phys. Rev. D 93, 112001, 2016
- DPI in J/ ψ + Y Phys. Rev. Lett. 116, 082002
- DPI in $\gamma\gamma$ + dijet Phys. Rev. D. 93, 052008

Many "legacy" Tevatron QCD results available

- http://www-d0.fnal.gov/Run2Physics/WWW/results/qcd.html
- http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

ÅUC

Inclusive Photon

G. Hesketh 19

Trigger on & select isolated EM clusters:

- trigger thresholds 25 70 GeV
- low p_t triggers pre-scaled!

Photon ID based on:

- shower shapes, isolation, tracking
- $-p_{_{T}} > 30 \text{ GeV}, |\eta| < 1.0$
- photon fraction varies from 50-80%

W+jets

Use leptonic W decays to probe more complex final states

- select electron or muon with pT> 25 GeV, transverse mass > 40 GeV
- jets with $E_{T} > 25 \text{ GeV}$

Unfold to particle level using SVD method

CDF Note 11167

- electron and muon channel then combined using BLUE

First measurement of double parton interactions (DP) in diphoton + dijet

Diphoton + dijet

- with diphotons, extra background from separate pp interactions (DI)

Use ratio instead of individual cross sections:

$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \,\sigma_{\rm hard}$$

where $R_c = Nc(1)/2Nc(2)$

- Nc(n) is the number of crossings with n hard scatters

Ľ

G. Hesketh

21

Number of double interactions (DI) and number of double-parton scatters (DP) :

$$N_{\rm DI} = f_{\rm DI} P_{\rm DI}^{\gamma\gamma} N_{\rm 2vtx}$$
$$N_{\rm DP} = f_{\rm DP} P_{\rm DP}^{\gamma\gamma} N_{\rm 1vtx}$$

Photon purities (P^{_{YY}}) essentially cancel. N $_{_{DI}}$ estimated using photon direction:

 $f_{\rm DI} = 0.193 \pm 0.021 \; (\text{stat}) \pm 0.030 \; (\text{syst})$

22

$$\sigma_{eff}^{-1} = \int d^2\beta [F(\beta)]^2$$

DP

 $F(\beta) = \int f(b)f(b-\beta)d^2b$, β is the impact parameter for the two colliding hadrons, f(b) is a function describing the spatial distribution of the parton matter inside a hadron.

$$\beta$$

$$\sigma_{\rm DP}^{(1,2)} = \frac{m}{2} \frac{\sigma^{(1)} \sigma^{(2)}}{\sigma_{\rm eff}}$$