Diboson production at the LHC

Lara Lloret Iglesias LIP - Lisbon LHCP2016, Lund

Diboson production

- Production dominated by qq annihilation and small contribution from gluon-gluon interaction.
- Diboson measurements are an important test of the Standard Model and perturbative QCD at TeV scale
- Confirm irreducible background for Higgs analysis (WW, ZZ, Zγ)
- Diboson processes are the backgrounds for New Physics
- Measurement of anomalous triple and quartic gauge boson couplings (aTGC and aQGC) is an indirect search for New Physics

Cross Section Measurement

The cross-section is calculated using essentially $\sigma = N / L$ but:

- With corrections for background contamination
- Event selection efficiency

$$\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times C \times \mathcal{L}_{int}}$$

We measure events within an analysisspecific fiducial region

> A is the efficiency for events to fall in the fiducial region relative to the full phase space

phase space
$$A = \frac{N_{
m MC}^{
m gen, \ fiducial}}{N_{
m MC}^{
m gen, \ total}}$$

 C is the reconstruction efficiency relative to the fiducial region

$$C = \frac{N_{\rm MC}^{\rm reco.}}{N_{\rm MC}^{\rm gen, fiducial}} \times \frac{\epsilon^{\rm data}}{\epsilon^{\rm MC}}$$

ATLAS event display

Event display for the ZZ-> ee+ $\mu\mu$ candidate event

CMS event display

ZZ at 13 TeV (ATLAS)

- ZZ → 4 leptons (eeee,eeμμ,μμμμ) channel
- Small BR but very clean signal
- Event selection:
 - > p_T > 20 GeV, 4 leptons, opposite charge same flavour pair
 - On-shell Z mass selection

66 GeV < mll < 116 GeV

- Background with < 4 leptons from Data
- Observed 63 events Expected bckg 0.62 events
- Systematic uncertainty dominated by statistics in the control samples

Fiducial xs calculated in a phase space close to experimental acceptance

Prediction [O(α s2)] 15.6^{+0.4}_{-0.4} pb

$$16.7^{+2.2}_{-2.0}(stat.)^{+0.9}_{-0.7}(syst.)^{+1.0}_{-0.7}(lumi.)$$
 pb

ZZ at 13 TeV (CMS)

Same final state but using less luminosity: 2.6 fb-1

- Event selection
 - 4 high $p_{\scriptscriptstyle T}$ leptons

At least 1 lepton pT> 20 GeV, other 3 leptons pT> 10 GeV

On-shell Z mass selection

60 GeV < mll < 120 GeV

- Observed 39 events expected background 0.89
- Main background: Z and WZ + jets
 Z+I'l' → misidentification probability
- Statistics are the dominant uncertainty
 - Prediction [NNLO]: $16.5^{+0.7}_{-0.5} \text{ pb}$

 $\sigma(pp \to ZZ) = 14.6^{+1.9}_{-1.8} (stat)^{+0.5}_{-0.3} (syst) \pm 0.2 (theo) \pm 0.4 (lum) pb$

WZ at 13 TeV (CMS)

WZ → Iv II channel (eee,eeμ,μμe,μμμ)

W selection

Lepton > 20, MET > 30 GeV

Z selection

- OS SF 2 leptons > 20, 10 GeV
- 60 GeV < mll < 120 GeV
- M_{3I} > 100 GeV
- Background: processes with prompt leptons are estimated from MC. The processes with at least one misidentified jet are estimated from data → tight-to-loose method:

Estimating the probability fake rate (in dijet events) and applying this probability to control regions with loose candidates (1,2 or 3) to estimate the contribution to the signal region

• Main background lepton miss-ID Z+jets, ttbar

WZ at 13 TeV (CMS)

Decay	$N_{ m WZ}^{ m exp}$	Background	Background	Total	Observed
channel		Non-prompt	Prompt	expected	
eee	$35.88 \pm 0.63^{+1.84}_{-1.78}$	$10.64 \pm 1.73^{+3.19}_{-2.46}$	$6.08 \pm 0.59^{+0.73}_{-0.66}$	$52.60 \pm 1.93^{+3.91}_{-3.29}$	49
ееµ	$50.23 \pm 0.77^{+2.41}_{-2.35}$	$14.83 \pm 3.56^{+3.88}_{-2.98}$	$7.57 \pm 0.47^{+1.00}_{-0.87}$	$72.63 \pm 3.67^{+4.89}_{-4.14}$	78
μμе	$56.02 \pm 0.80^{+2.47}_{-2.42}$	$21.56 \pm 3.21^{+5.01}_{-3.86}$	$8.43 \pm 0.55^{+1.17}_{-1.04}$	$86.01 \pm 3.35^{+5.90}_{-4.89}$	83
μμμ	$83.96 \pm 0.99^{+3.35}_{-3.27}$	$20.16 \pm 4.91^{+6.05}_{-4.65}$	$11.13 \pm 0.49^{+1.47}_{-1.28}$	$115.25 \pm 5.03^{+7.30}_{-6.09}$	108
Total	$226.09 \pm 1.61^{+9.46}_{-9.25}$	$67.19 \pm 7.08^{+14.43}_{-11.10}$	$33.21 \pm 1.05^{+4.32}_{-3.80}$	$326.50 \pm 7.33^{+18.66}_{-15.90}$	318

Prediction (NLO) $274_{-10}^{+11} \, fb$

$$\sigma_{\text{fid}}(pp \to WZ \to \ell \nu \ell' \ell') = 265 \pm 22 \, (\text{stat})_{-22}^{+20} \, (\text{syst}) \pm 9 \, (\text{lum}) \, \text{fb},$$

Main systematic coming from misidentification probability (5-6% in final xs)

Prediction (NLO) $42.6^{+1.6}_{-0.8} \text{ pb}$

$$\sigma(pp \to WZ) = 40.9 \pm 3.4 \, (stat)^{+3.1}_{-3.3} \, (syst) \pm 0.4 \, (theo) \pm 1.3 \, (lum) \, pb.$$

Phys. Rev. D 93, 092004 (2016)

WZ at 8 TeV (ATLAS)

Total expected	1824.8±7.0		
Observed events	2091		

- 2 opposite charge same flavor leptons in m₇ region
- Additional lepton $p_{\tau} > 20 \text{ GeV}$, $E_{\tau}^{\text{miss}} > 30 \text{ GeV}$
- Background sources: events where at least one of the candidate leptons is not a prompt lepton (reducible background) and events where all candidates are prompt leptons or are produced in the decay of a τ (irreducible background).

Main reducible background: Z+jets, Zy

Main irreducible background: ZZ

- Reducible background: data-driven method based on the inversion of a global matrix containing the efficiencies and the misidentification probabilities for prompt and fake leptons
- Main systematics are fake lepton and electron ID efficiency

Prediction (NLO) $21.0 \pm 1.6 \text{ pb.}$

$$\sigma_{W^{\pm}Z}^{\text{tot.}} = 24.3 \pm 0.6 \, (\text{stat.}) \pm 0.6 \, (\text{sys.}) \pm 0.4 \, (\text{th.}) \pm 0.5 \, (\text{lumi.}) \, \text{pb}$$

Phys. Rev. D 93, 092004 (2016)

WZ at 8 TeV (ATLAS)

Comparison with NLO

WZ at 13 TeV (ATLAS)

- The Z+jets and Zy background : scaling the observed number of events in a Z control sample by a fake factor.
- tt, Wt and WW + jets ("top-like") : exploiting the different-flavour decay channels of these processes.

 $\sigma_{W^{\pm}Z}^{\text{tot.}} = 50.6 \pm 2.6 \,(\text{stat.}) \pm 2.0 \,(\text{sys.}) \pm 0.9 \,(\text{th.}) \pm 1.2 \,(\text{lumi.}) \,\text{pb.}$

Prediction (NNLO) $48.2^{+1.1}_{-1.0}$ pb.

12

WW at 8 TeV (CMS)

Event Selection (19.4 fb⁻¹):

- 2 opposite sign high p_T leptons
- High E_tmiss
- 0 or 1 jet bin
- Additional lepton veto, top veto, Z veto...
- Higgs portion is not considered as signal

Main backgrounds estimated in data:

- Top quark production (mainly ttbar and tW)
- Instrumental backgrounds arising from misidentified leptons in W+jets production → tight-to-loose
- Mismeasurement of $\sim E_{T}^{miss}$ in Z/γ +jets events

Prediction (NNLO):

13

$$\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb}$$
 59.8^{+1.3}_{-1.1} pb

xs in fiducial regions defined by zero jets at particle level varying jet $p_{\scriptscriptstyle T}$ threshold:

$p_{\mathrm{T}}^{\mathrm{jet}}$ threshold (GeV)	σ_{0jet} measured (pb)	σ_{0jet} predicted (pb)
20	$36.2 \pm 0.6 (\text{stat.}) \pm 2.1 (\text{exp.}) \pm 1.1 (\text{th.}) \pm 0.9 (\text{lum.})$	$36.7 \pm 0.1 (stat.)$
25	$40.8 \pm 0.7 (\text{stat.}) \pm 2.3 (\text{exp.}) \pm 1.3 (\text{th.}) \pm 1.1 (\text{lum.})$	$40.9 \pm 0.1 (stat.)$
30	$44.0 \pm 0.7 (\text{stat.}) \pm 2.5 (\text{exp.}) \pm 1.4 (\text{th.}) \pm 1.1 (\text{lum.})$	$43.9 \pm 0.1 (stat.)$

WW at 8 TeV (CMS)

CMS-PAS-SMP-16-006

WW at 13 TeV (CMS)

Luminosity: 2.3 fb⁻¹

Combination of the 0-jet and 1-jet categories:

$$115.3 \pm 10.3 \text{ (stat.} + \text{syst.)} \pm 3.6 \text{ (lumi.) pb}$$

$$\sigma^{\rm NNLO}({\rm pp} \to {\rm W}^+{\rm W}^-) = 120.3 \pm 3.6~{\rm pb}$$

WW at 8 TeV (ATLAS)

Event Selection:

- 2 opposite sign high pT leptons
- High Missing E_T
- Additional lepton veto, top veto, jet veto, Z veto, etc
- DY contribution extracted from a fit ($\Delta(\phi \text{ (missing } p_T, \text{ missing } E_T))$
- Systematic dominant from modeling of signal efficiency (Jets)

WW at 8 TeV (ATLAS)

Consistent within 1.4 standard deviations wrt NNLO $63.2^{+1.6}_{-1.4}(scale) \pm 1.2(PDF)$ pb.

 $71.1\pm1.1(\text{stat})^{+5.7}_{-5.0}(\text{syst})\pm1.4(\text{lumi})$ pb.

Z(II)γ at 8 TeV

- Dilepton mass > 50 GeV (CMS) and 40 GeV (ATLAS)
- One good photon with ET > 15 GeV and $\Delta R(I, \gamma) > 0.7$

J. High Energy Phys. 04 (2015) 164

Phys. Rev. D 93, 112002 (2016) 18

Summary Tables: ATLAS & CMS

ATLAS: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Anomalous Gauge Couplings

- Anomalous couplings result in an increase of diboson cross section at high energies:
 - \triangleright Observables proportional to the **invariant mass of the diboson system** and the **boson p**_T are particularly sensitive (mVV, mV, p_TV ...)
- Couplings are measured (or limits are set) by performing binned fit in single sensitive observable :
 - Sensitivity mostly in highest bins
- Limiting factors: observed statistics in the tail (primary) and systematic and statistical uncertainty on the signal model (secondary)
- Sensitivity depends on absolute size of anomalous coupling signal, absolute size of expected background and uncertainties
 - Binning is optimized to reach highest expected sensitivity
 - Fit is usually performed simultaneously on electron and muon channel
 - 95% CL limits are set

ATGC limit at WW channel

ATLAS: arXiv:1603.01702, submitted to JHEP, CMS: arXiv: arXiv:1507.03268 submitted to EPJC

EFT Scenario (C. Degrandeet al., Effective Field Theory: A Modern Approach to Anomalous Couplings, $m_{\ell\ell}$ (GeV) Annals Phys. 335 (2013) 21–32, arXiv:1205.4231 [hep-ph]).

Parameter	ATLAS 95% CL interval	CMS 95% CL interval	
$C_{www} I \Lambda^2$	[-4.61/4.60]	[-5.7, 5.9]	
C _B / Λ^2	[-20.9, 26.3]	[-29.2, 23.9]	21
C _W / Λ^2	[-5.87, 10.54]	[-11.4, 5.4]	

Limits ZZy/Zyy couplings (CMS)

• $Z\gamma \rightarrow \nu\nu\gamma$ channel

• $Z\gamma \rightarrow II\gamma$ channel

Best fit of the combined muon and electron

Limits ZZγ/Zγγ couplings (ATLAS)

aTGC is consistent with 0

ATGC overview

WWZ

WWγ

Neutral aTGC overview

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

aTGC ZZZ and ZγZ

aTGC Zγγ and ZZγ

Summary

- Very good performance of the LHC has provided good data for both Run I and Run II
- Several full analysis results from Run I at 8 TeV haven been published
- Some diboson cross sections have already been measured in Run II Differences when comparing with NLO predictions but good agreement with NNLO predictions.
- Anomalous couplings search shows no deviation from the SM

Thanks for your attention!

Backup

ZZ at 13 TeV (CMS)

Uncertainty	$Z\! ightarrow \! 4\ell$	$ZZ\! o\!4\ell$
ID efficiency	2–6%	0.4-0.9%
Isolation efficiency	1–6%	0.3-1.1%
Trigger efficiency	2–4%	2%
MC statistics	1–2%	1%
Background	0.7-1.4%	0.7–2%
Pileup	0.4-0.8%	0.2%
PDF	1%	1%
Scale	1%	1%
Luminosity	2.7%	2.7%

ZZ at 13 TeV (CMS)

Fiducial xs:

•

Cross section measurement	Fiducial cuts
Common requirements	$p_{\rm T}^{\ell_1} > 20$ GeV, $p_{\rm T}^{\ell_2} > 10$ GeV, $p_{\rm T}^{\ell_{3,4}} > 5$ GeV,
	$\left \begin{array}{l} p_{\mathrm{T}}^{\ell_1} > 20 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} > 10 \text{ GeV}, p_{\mathrm{T}}^{\ell_{3,4}} > 5 \text{ GeV}, \\ \left \eta^{\ell} \right < 2.5 \text{ GeV}, m_{\ell^+\ell^-} > 4 \text{ GeV (any $\ell\ell$ pair)} \end{array} \right $
$Z ightarrow \ell \ell \ell' \ell'$	$m_{\rm Z_1} > 40{\rm GeV}$
	$80 < m_{\ell\ell\ell'\ell'} < 100 \text{ GeV}$
$ZZ o \ell\ell\ell'\ell'$	$60 < m_{Z_1}, m_{Z_2} < 120 \text{ GeV}$

$$\begin{split} &\sigma_{fid}(pp\to Z\to\ell\ell\ell'\ell') = 30.5^{+5.2}_{-4.7}\,(stat)^{+1.8}_{-1.4}\,(syst) \pm 0.8\,(lum)\,fb,\\ &\sigma_{fid}(pp\to ZZ\to\ell\ell\ell'\ell') = 34.8^{+4.6}_{-4.2}\,(stat)^{+1.2}_{-0.8}\,(syst) \pm 0.9\,(lum)\,fb. \end{split}$$

WZ at 8 TeV (ATLAS)

	eee	μее	$e\mu\mu$	μμμ	Combined		
Source		Relative uncertainties [%]					
e energy scale	0.8	0.4	0.4	0.0	0.3		
e id. efficiency	2.9	1.8	1.0	0.0	1.0		
μ momentum scale	0.0	0.1	0.1	0.1	0.1		
μ id. efficiency	0.0	0.7	1.3	2.0	1.4		
$E_{\rm T}^{\rm miss}$ and jets	0.3	0.2	0.2	0.1	0.3		
Trigger	0.1	0.1	0.2	0.3	0.2		
Pileup	0.3	0.2	0.2	0.1	0.2		
Misid. leptons background	2.9	0.9	3.1	0.9	1.3		
ZZ background	0.6	0.5	0.6	0.5	0.5		
Other backgrounds	0.7	0.7	0.7	0.7	0.7		
Uncorrelated	0.7	0.6	0.5	0.5	0.3		
Total systematics	4.5	2.6	3.7	2.5	2.4		
Luminosity	2.2	2.2	2.2	2.2	2.2		
Statistics	6.2	5.4	5.3	4.7	2.7		
Total	8.0	6.3	6.8	5.7	4.2		

WZ at 8 TeV (ATLAS)

WZ at 13 TeV (ATLAS)

Comparison of W±Z cross section measurements at various centre-of-mass energies with Standard Model expectations.

WZ at 13 TeV (ATLAS)

13 TeV WZ at CMS

Decay	$N_{ m WZ}^{ m exp}$	Background	Background	Total	Observed
channel		Non-prompt	Prompt	expected	
eee	$35.88 \pm 0.63^{+1.84}_{-1.78}$	$10.64 \pm 1.73^{+3.19}_{-2.46}$	$6.08 \pm 0.59^{+0.73}_{-0.66}$	$52.60 \pm 1.93^{+3.91}_{-3.29}$	49
ееµ	$50.23 \pm 0.77^{+2.41}_{-2.35}$	$14.83 \pm 3.56^{+3.88}_{-2.98}$	$7.57 \pm 0.47^{+1.00}_{-0.87}$	$72.63 \pm 3.67^{+4.89}_{-4.14}$	78
μμе	$56.02 \pm 0.80^{+2.47}_{-2.42}$	$21.56 \pm 3.21^{+5.01}_{-3.86}$	$8.43 \pm 0.55^{+1.17}_{-1.04}$	$86.01 \pm 3.35^{+5.90}_{-4.89}$	83
μμμ	$83.96 \pm 0.99^{+3.35}_{-3.27}$	$20.16 \pm 4.91^{+6.05}_{-4.65}$	$11.13 \pm 0.49^{+1.47}_{-1.28}$	$115.25 \pm 5.03^{+7.30}_{-6.09}$	108
Total	$226.09 \pm 1.61^{+9.46}_{-9.25}$	$67.19 \pm 7.08^{+14.43}_{-11.10}$	$33.21 \pm 1.05^{+4.32}_{-3.80}$	$326.50 \pm 7.33^{+18.66}_{-15.90}$	318

Zγ at 8 TeV CMS

Zy → vvy selection:

- 1central ($|\eta|$ <1.44) high pT(>145 GeV) photon
- ETmiss>140 GeV
- Large W(ℓνγ) BKG from MC but checked in CR.
- Measurements in good agreement with NNLO predictions (50.0 + 2.4 2.2 fb.):

$$52.7 \pm 2.1(stat.) \pm 6.4(syst.) \pm 1.4(lumi.)$$
 fb

8 TeV WW CMS

