#### Precision Electroweak Physics at Hadron Colliders

Matthias Schott on behalf of the ATLAS, CMS, LHCb, D0 + CDF Collaborations



#### Precision Electroweak Physics at Hadron Colliders

Matthias Schott on behalf of the ATLAS, CMS, LHCb, D0 + CDF Collaborations



**UNIVERSITÄT** MAINZ

#### Challenges

I expected times like this – but never thought they'd be so bad, so long, and so frequent.

© DESPAIR.COM

#### **Revisiting the Electroweak Sector**

#### **Outline**

Revisiting the Electroweak Sector W Boson Mass at the LHC W Boson Mass at Tevatron Electroweak Mixing Angle Summary and Outlook IG

JOHANNES GUTENB

#### Summary of the Electroweak Sector

- The electroweak sector of the Standard Model has five parameters
  - $\alpha_{em_{r}} G_{F_{r}} m_{W_{r}} m_{Z_{r}} \sin^2 \theta_{W}$
  - (+ m<sub>H</sub> for the scalar sector)
- However, they are not independent, but related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \quad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

- In this talk: Focus on EW observables
  - Tests of the gauge structure of the electroweak sector (e.g. dibosons, triboson, aTGC, qTGC, ...) will be discussed in the talk of Lara and Emily later today







| coupling        | parameters                            | channel       |
|-----------------|---------------------------------------|---------------|
| $WW\gamma$      | $\lambda_{\gamma}, \Delta k_{\gamma}$ | $WW, W\gamma$ |
| WWZ             | $\lambda_Z, \Delta k_Z, \Delta g_1^Z$ | WW, WZ        |
| $ZZ\gamma$      | $h_3^Z, h_4^Z$                        | $Z\gamma$     |
| $Z\gamma\gamma$ | $h_3^\gamma, h_4^\gamma$              | $Z\gamma$     |
| $Z\gamma Z$     | $f_{40}^{\gamma}, f_{50}^{\gamma}$    | ZZ            |
| ZZZ             | $f_{40}^Z, f_{50}^Z$                  | ZZ            |



# **Radiative Corrections**



Z/W

- Tree-level not sufficient
  - The impact of corrections stored in EW form factors
- The relation between SM parameters appear with quadratic dependence on m<sub>top</sub>, logarithmic dependence on M<sub>H</sub>
- Idea of electroweak fits
  - Measure many different observables in the experiment
  - Calculate the relations between all observables in SM
  - Probe the consistency of the  $\sin^2\theta_{\text{eff}}^f (\ln(M_H), M_H)$ SM / Predict observables

$$\begin{split} & \overbrace{\gamma, Z/W}^{\gamma, Z/W} \bigvee_{f'/\bar{f}} \gamma, Z/W}^{\gamma, Z/W} \bigvee_{Z/W} \gamma, Z/W} \gamma, Z/W \\ & sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W \\ & g_{V,f} = \sqrt{\rho_Z^f} (I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f) \\ & g_{A,f} = \sqrt{\rho_Z^f} I_3^f \\ & M_W^2 = \frac{M_Z^2}{2} \left( 1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right) \end{split}$$

H

f

$$M_W\left(\ln(M_H), m_t^2, M_Z, \Delta\alpha_{\rm had}^{(5)}(M_Z^2), \alpha_s(M_Z^2)\right)$$
$$\sin^2\theta_{\rm eff}^f\left(\ln(M_H), M_H, m_t^2, M_Z, \Delta\alpha_{\rm had}^{(5)}(M_Z^2), \alpha_s(M_Z^2)\right)$$

# Input to the Global Electroweak Fit



- Input for the gobal electroweak fit mostly from
  - LEP: Z boson observables
  - Tevatron: W boson, top quark mass
  - LHC: Higgs Boson, top quark mass (see dedicated top-session)
- Note: improvement on m<sub>H</sub> precision leaves fit unchanged
- Improvement on m<sub>top</sub> will be limited by theoretical uncertainty on pole-mass definition (See talk by Sven-Olaf Moch)
- Largest discrepancy between A<sub>l</sub>(SLD) and RG
   A<sub>FB</sub><sup>0,b</sup>, both sensitive to sin<sup>2</sup>θ<sub>W</sub>



Prof. Dr. Matthias Schott

# What we need: $m_W$ , $m_{top}$ , $sin^2\theta_W$



- "Simple" thing: Test consistency of the Standard Model
  - Current p-value = 0.22
  - In order to match the  $m_{top}$  precision, we would need  $\Delta m_W < 5$  MeV
    - Side-Note: also no F<sub>w</sub>
       measurement at LHC yet
- Electroweak precision measurements are sensitive to several new physics scenarios, e.g. SUSY
  - Radiative correction depends on mass splitting (Δm<sup>2</sup>) between squarks in SU(2) doublet
  - Precision on m<sub>w</sub> could significantly limit the allowed MSSM space



# The W Boson Mass at the LHC and Support Measurements



#### <u>Outline</u>

Revisiting the Electroweak Sector W Boson Mass at the LHC W Boson Mass at Tevatron Electroweak Mixing Angle Summary and Outlook

### **Measurement Principle**



- Basic approach to measure W boson mass is a template fit
- Relevant observables
  - Lepton transverse momentum
  - Transverse mass
  - (missing transverse energy)
- Relies on perfect understanding of
  - Detector response (See talk by Nenad this afternoon)
  - Physics modelling
- Expect different physics modelling effects for W<sup>+</sup>, W<sup>-</sup> and different rapidities





Prof. Dr. Matthias Schott

# Modeling of Vector Boson p<sub>T</sub>







- Modelling of  $p_{T}(W)$  impacts directly the  $p_{T}$ lepton distributions and relies on NNLO and **NNLL/resummed calculations** 
  - Idea: Precision measurement of  $p_{T}(Z)$  and tune model parameters
  - Problem: different generators predict different transfers from Z to W
- PDFs play a different role in W and Z production

Prof. Dr. Matthias Schott

p<sup>∥</sup><sub>⊤</sub> [GeV]

#### **PDF Effects**







- Dominating PDF uncertainties due to uncertainty on the W boson polarization
  - caused by the relative contribution of u,d, anti-u, -d quarks and gluons
  - Polarisation impacts the p<sub>T</sub> spectrum of the decay leptons
- Uncertainties on heavy quark PDFs

### **PDF Related Measurements**





All single boson production cross-sections restrict PDFs

- Differential W and Z boson production (also at high rapidities LHCb)
- Differential precision more important than center of mass energy
- Test heavy flavor PDFs, e.g. via VB+c-jet measurements
- Even not all 7 TeV measurements are yet published

Prof. Dr. Matthias Schott

# **Angular Coefficients**



 The fully differential DY cross section can be reorganised by factorising the dynamic of the boson production, and the kinematic of the decay (CS-Frame)

 $\frac{d\sigma}{dp_T^2 dy dM d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma}{dp_T^2 dy dM} \times \left[ (1 + \cos^2 \theta) + A_0 \frac{1}{2} (1 - 3\cos^2 \theta) \right]$ 

 Uncertainties in A<sub>i</sub> will affect decay
 kinematics of
 leptons  $+A_{1} \sin 2\theta \cos \phi$ + $A_{2} \frac{1}{2} \sin^{2} \theta \cos 2\phi$ + $A_{3} \sin \theta \cos \phi$ + $A_{4} \cos \theta$ + $A_{5} \sin^{2} \theta \sin 2\phi$ + $A_{6} \sin 2\theta \sin \phi$ + $A_{7} \sin \theta \sin \phi$ ]

- CMS and ATLAS Results:
  - Significant differences to predictions
  - A<sub>2</sub> shows sensitivity to parton GUTENB shower implementation UNIVERSIT,



Prof. Dr. Matthias Schott

# Testing with Z Bosons



MAINZ

- The full detector response calibration of the m<sub>W</sub> measurement can be tested to a large extend by "remeasureing" the Z boson mass, mimicing the W
  - Turn one decay lepton in a pseudo neutrino
- CMS note using 7 TeV data
  - Validation of muon calibration
  - Statistically dominated (More in Nenad's talk)
- Model uncertainties cannot be easily transferred from Z to W
  - Also some detector systematics have to be treated carefully

|                                        | $M_{ m Z}^{ m W_{like}+}$ |                | $M_{ m Z}^{ m W_{ m like}-}$ |    | _              |     |
|----------------------------------------|---------------------------|----------------|------------------------------|----|----------------|-----|
| Sources of uncertainty                 | p <sub>T</sub>            | m <sub>T</sub> | ₽́T                          | pT | m <sub>T</sub> | ₽́T |
| Lepton efficiencies                    | 1                         | 1              | 1                            | 1  | 1              | 1   |
| Lepton calibration                     | 14                        | 13             | 14                           | 12 | 15             | 14  |
| Recoil calibration                     | 0                         | 9              | 13                           | 0  | 9              | 14  |
| Total experimental syst. uncertainties | 14                        | 17             | 19                           | 12 | 18             | 19  |
| Alternative data reweightings          | 5                         | 4              | 5                            | 14 | 11             | 11  |
| PDF uncertainties                      | 6                         | 5              | 5                            | 6  | 5              | 5   |
| QED radiation                          | 22                        | 23             | 24                           | 23 | 23             | 24  |
| Simulated sample size                  | 7                         | 6              | 8                            | 7  | 6              | 8   |
| Total other syst. uncertainties        | 24                        | 25             | 27                           | 28 | 27             | 28  |
| Total systematic uncertainties         | 28                        | 30             | 32                           | 30 | 32             | 34  |
| Statistics of the data sample          | 40                        | 36             | 46                           | 39 | 35             | 45  |
| Total stat.+syst.                      | 49                        | 47             | 56                           | 50 | 48             | 57  |



#### The W Boson Mass at Tevatron

#### **Outline**

Revisiting the Electroweak Sector W Boson Mass at the LHC W Boson Mass at Tevatron Electroweak Mixing Angle Summary and Outlook

JOHANNES GUTENBERG

# Latest Results from CDF and D0



- Proton / anti-proton collisions reduce impact of heavy quarks
  - No differences between W<sup>+</sup>/W<sup>-</sup>
  - Simplier extrapolation from Z to W
  - Low pile-up
- CDF measurement in e/mu channel
  - Only 20% of data-set used
  - Calibration via J/Psi, Upsilon and Z
- D0 uses only electron channel
  - Acceptance up to η<1.0</p>
  - Parameterized simulation
- D0 started a first effort to allow for an easy reavaluation of m<sub>w</sub> with new PDF-sets

| Source                                                                                          | $CDF\ m_T(\mu, u)$                 | $CDF\ m_T(e, u)$                | $D \ensuremath{Ø}\xspace m_T(e,  u)$ |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|--------------------------------------|--|--|--|--|
| Experimental – Statistical power of the calibration sample.                                     |                                    |                                 |                                      |  |  |  |  |
| Lepton Energy Scale                                                                             | 7                                  | 10                              | 16                                   |  |  |  |  |
| Lepton Energy Resolution                                                                        | 1                                  | 4                               | 2                                    |  |  |  |  |
| Lepton Energy Non-Linearity                                                                     |                                    |                                 | 4                                    |  |  |  |  |
| Lepton Energy Loss                                                                              |                                    |                                 | 4                                    |  |  |  |  |
| Recoil Energy Scale                                                                             | 5                                  | 5                               |                                      |  |  |  |  |
| <b>Recoil Energy Resolution</b>                                                                 | 7                                  | 7                               |                                      |  |  |  |  |
| Lepton Removal                                                                                  | 2                                  | 3                               |                                      |  |  |  |  |
| Recoil Model                                                                                    |                                    |                                 | 5                                    |  |  |  |  |
| Efficiency Model                                                                                | Efficiency Model                   |                                 | 1                                    |  |  |  |  |
| Background                                                                                      | 3                                  | 4                               | 2                                    |  |  |  |  |
| W production and o                                                                              | decay model – N                    | ot statistically di             | riven.                               |  |  |  |  |
| PDF                                                                                             | 10                                 | 10                              | 11                                   |  |  |  |  |
| QED                                                                                             | 4                                  | 4                               | 7                                    |  |  |  |  |
| Boson $p_T$                                                                                     | 3                                  | 3                               | 2                                    |  |  |  |  |
| [Phys.Rev. D88 (2013                                                                            |                                    |                                 |                                      |  |  |  |  |
| PDF / total u                                                                                   | nc. • comb Or                      | m <sub>T</sub> □ p <sub>T</sub> | riangle met                          |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 | <b>⊢⊨●</b> - <b>↓</b> ↓ <b>D</b> Ø |                                 | DØ run llb12                         |  |  |  |  |
|                                                                                                 |                                    |                                 | arXiv:1203.0293v2                    |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
| preservatio                                                                                     |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
| MSTW08N                                                                                         |                                    |                                 |                                      |  |  |  |  |
| preservation                                                                                    |                                    |                                 |                                      |  |  |  |  |
|                                                                                                 |                                    | 4                               |                                      |  |  |  |  |
|                                                                                                 |                                    |                                 |                                      |  |  |  |  |
| 80.24 80.26 80.28 80.3 80.32 80.34 80.36 80.38 80.4 80.42<br>World average M <sub>w</sub> [GeV] |                                    |                                 |                                      |  |  |  |  |

### **Possible Updates**

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Factor 2-5 more statistics available
- Newer PDF sets, e.g. CT10W include more recent data
  - Dominant sources of W mass uncertainty are the *d*-valence and *d-u* degrees of freedom
  - Inclusion of all LHC results on W<sup>+</sup>,
     W<sup>-</sup> and Z will also help to improve Tevatron measurements
- Improvement in theoretical predictions of p<sub>T</sub>(W/Z) needed in order to accommodate measured p<sub>T</sub>(W/Z) spectra at Tevatron/LHC





#### The Electroweak Mixing Angle



#### Outline

Revisiting the Electroweak Sector W Boson Mass at the LHC W Boson Mass at Tevatron **Electroweak Mixing Angle** Summary and Outlook

# How to measure $\sin^2\theta_w^{eff}$ ?



#### Forward-Backward Asymmetry

- Z couplings differ for left- and right-handed fermions
- Define A<sub>FB</sub> in Collin-Soper Frame
  - Defined w.r.t. to incoming quark and outgoing lepton

$$A_{\rm FB} = \frac{N_{\cos\theta_{\rm CS}^* \ge 0} - N_{\cos\theta_{\rm CS}^* < 0}}{N_{\cos\theta_{\rm CS}^* \ge 0} + N_{\cos\theta_{\rm CS}^* < 0}}$$

 A<sub>FB</sub> linked to the weak mixing angle, via the relation

$$A_{FB} = \frac{16}{3} \cdot \frac{(1 - 4|Q_f|\sin^2\theta_W)}{1 + (1 - 4|Q_f|\sin^2\theta_W)^2} \cdot \frac{(1 - 4|Q_{f'}|\sin^2\theta_W)}{1 + (1 - 4|Q_{f'}|\sin^2\theta_W)^2} = UNIVERSITAT$$



Prof. Dr. Matthias Schott

# Results from the LHC



- LHC-Challenge: where is the quark?
  - Misidentified quark-direction results in dilution of A<sub>FB</sub>
  - Forward Z events have smallest dilution effects! LHCb!
- $A_{FB}$  measured as a function of  $m_{\mu\mu}$  (LHCb) and  $m_{\mu\mu}/m_{ee}$  (ATLAS/CMS)
- Measurement approach
  - Use template fitting to extract sin<sup>2</sup>θ<sub>w</sub>
  - Alternative: Publish unfolded measurement of A<sub>FB</sub> and decouple extraction of sin<sup>2</sup>θ<sub>w</sub>



### **Overview and Reachable Precision**



- Dominating uncertainties due to PDFs
- LEP and SLD measurement still most precise measurement
  - new CDF measurement gets close to solve discrepancy
  - Profiling during sin<sup>2</sup> θ<sub>w</sub> fit might be able to improve PDF uncertainties



#### Summary And Outlook



Supporting analyses for "real" electroweak precision measurements are available Experimental uncertainties are under control **Bright Fu** 

First m<sub>w</sub> at LHC seems to be close

**Suggested Talks in parallel Sessions** 

- Vector Boson studies with ATLAS
- Vector Boson studies with CMS
  - Challenges in or results from W mass measurements with ATLAS and CMS Drell-Yan production at NNLO+NNLL order
  - NLO QCD+EW for V+jets

#### For Discussion



H H

How to make sure that we can repeat "old" analyses? How to organize the combination of different  $m_W$  and  $\sin^2\theta_W$  measurements? Should we aim for a low pile-up run in the near(er) future to improve Hadronic Recoil Resolution Measure  $p_T(W)$ 

# Modeling of Vector Boson p<sub>T</sub>



- Do not expect that NNLO prediction describes low p<sub>T</sub> spectrum
  - Parton Shower is missing
- Expect effect of NLO
   electroweak corrections = 0.7
   for high p<sub>T</sub>(Z)
  - Sensitivity is not yet high enough to resolve EWK contributions



# Some words on the W boson width

JGU JOHANNES GUTENBERG UNIVERSITÄT MAIT

- Direct measurement of \(\Gamma\_w\) from LEP and Tevatron experiments
- Indirect measurement possible via inclusive σ<sub>w</sub> and σ<sub>z</sub> measurements via

$$R_{lep} = \frac{\sigma(pp \to W^{\pm} + X) \cdot BR(W^{\pm} \to l^{\pm}v)}{\sigma(pp \to Z^0 + X) \cdot BR(Z \to l^+l^-)}$$

$$R_{lep} = \frac{\sigma_W}{\sigma_Z} \cdot \frac{\Gamma_{W^{\pm} \to l^{\pm} v}}{\Gamma_W} \cdot \frac{\Gamma_Z}{\Gamma_{Z \to l^+ l^-}}$$



[PoS(LeptonPhoton2015)071]

- However, this assumes a SM partial decay width
  - Cannot be used for the global electroweak fit UNIVERSITAT MAINZ

Prof. Dr. Matthias Schott

## What about forward muons?





[G.Bozzi et. al, arXiv508.06954]

- Idea: Use forward muons at LHCb (2<η<5) to anti-correlate PDF uncertainties
  - Drawback: No E<sub>T</sub><sup>Miss</sup>, i.e. Only p<sub>T</sub> as sensitive observable
- Prediction: Improve PDF uncertainties on a combined CMS, ATLAS + LHCb measurement by 30%

# Input to the Global Electroweak Fit



- Input for the gobal electroweak fit mostly from
  - LEP: Z boson observables
  - Tevatron: W boson, top quark mass
  - LHC: Higgs Boson, top quark mass (see dedicated top-session)
- Note: improvement on m<sub>H</sub> precision leaves fit unchanged

| Parameter                                                          | Input value                      | Free<br>in fit | Fit Result                             | w/o exp. input<br>in line               | w/o exp. input<br>in line, no theo. unc |
|--------------------------------------------------------------------|----------------------------------|----------------|----------------------------------------|-----------------------------------------|-----------------------------------------|
| $M_H  [\text{GeV}]^{(0)}$                                          | $125.14\pm0.24$                  | yes            | $125.14\pm0.24$                        | $93^{+25}_{-21}$                        | $93^{+24}_{-20}$                        |
| $M_W$ [GeV]                                                        | $80.385\pm0.015$                 | _              | $80.364 \pm 0.007$                     | $80.358 \pm 0.008$                      | $80.358 \pm 0.006$                      |
| $\Gamma_W$ [GeV]                                                   | $2.085\pm0.042$                  | -              | $2.091\pm0.001$                        | $2.091\pm0.001$                         | $2.091\pm0.001$                         |
| $M_Z$ [GeV]                                                        | $91.1875 \pm 0.0021$             | yes            | $91.1880 \pm 0.0021$                   | $91.200\pm0.011$                        | $91.2000 \pm 0.010$                     |
| $\Gamma_Z$ [GeV]                                                   | $2.4952 \pm 0.0023$              | _              | $2.4950 \pm 0.0014$                    | $2.4946 \pm 0.0016$                     | $2.4945 \pm 0.0016$                     |
| $\sigma_{\rm had}^0$ [nb]                                          | $41.540 \pm 0.037$               | -              | $41.484\pm0.015$                       | $41.475\pm0.016$                        | $41.474 \pm 0.015$                      |
| $R^0_\ell$                                                         | $20.767\pm0.025$                 | _              | $20.743\pm0.017$                       | $20.722\pm0.026$                        | $20.721\pm0.026$                        |
| $A_{ m FB}^{0,\ell}$                                               | $0.0171 \pm 0.0010$              | -              | $0.01626 \pm 0.0001$                   | $0.01625 \pm 0.0001$                    | $0.01625 \pm 0.0001$                    |
| $A_\ell (\star)$                                                   | $0.1499\pm0.0018$                | _              | $0.1472 \pm 0.0005$                    | $0.1472 \pm 0.0005$                     | $0.1472 \pm 0.0004$                     |
| $\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$                 | $0.2324 \pm 0.0012$              | _              | $0.23150 \pm 0.00006$                  | $0.23149 \pm 0.00007$                   | $0.23150 \pm 0.00005$                   |
| $A_c$                                                              | $0.670\pm0.027$                  | _              | $0.6680 \pm 0.00022$                   | $0.6680 \pm 0.00022$                    | $0.6680 \pm 0.00016$                    |
| $A_b$                                                              | $0.923\pm0.020$                  | _              | $0.93463 \pm 0.00004$                  | $0.93463 \pm 0.00004$                   | $0.93463 \pm 0.00003$                   |
| $A_{ m FB}^{0,c}$                                                  | $0.0707 \pm 0.0035$              | _              | $0.0738 \pm 0.0003$                    | $0.0738 \pm 0.0003$                     | $0.0738 \pm 0.0002$                     |
| $A_{ m FB}^{0,b}$                                                  | $0.0992 \pm 0.0016$              | _              | $0.1032 \pm 0.0004$                    | $0.1034 \pm 0.0004$                     | $0.1033 \pm 0.0003$                     |
| $R_c^0$                                                            | $0.1721 \pm 0.0030$              | -              | $0.17226^{+0.00009}_{-0.00008}$        | $0.17226 \pm 0.00008$                   | $0.17226 \pm 0.00006$                   |
| $R_b^0$                                                            | $0.21629 \pm 0.00066$            | -              | $0.21578 \pm 0.00011$                  | $0.21577 \pm 0.00011$                   | $0.21577 \pm 0.00004$                   |
| $\overline{\overline{m}_c}$ [GeV]                                  | $1.27^{+0.07}_{-0.11}$           | yes            | $1.27^{+0.07}_{-0.11}$                 | _                                       | _                                       |
| $\overline{m}_b$ [GeV]                                             | $4.20 \substack{+0.17 \\ -0.07}$ | yes            | $4.20 \substack{+0.17 \\ -0.07}$       | _                                       | _                                       |
| $m_t$ [GeV]                                                        | $173.34\pm0.76$                  | yes            | $173.81 \pm 0.85^{(\bigtriangledown)}$ | $177.0^{+2.3}_{-2.4}(\bigtriangledown)$ | $177.0\pm2.3$                           |
| $\Delta \alpha^{(5)}_{\rm had} (M_Z^2)^{(\dagger \bigtriangleup)}$ | $2757\pm10$                      | yes            | $2756\pm10$                            | $2723\pm44$                             | $2722\pm42$                             |
| $\alpha_s(M_Z^2)$                                                  | _                                | yes            | $0.1196 \pm 0.0030$                    | $0.1196\pm0.0030$                       | $0.1196\pm0.0028$                       |

<sup>(o)</sup>Average of the ATLAS and CMS measurements assuming no correlation of the systematic uncertainties.

<sup>(\*)</sup>Average of the LEP and SLD  $A_{\ell}$  measurements, used as two measurements in the fit.

 $(\nabla)$  The theoretical top mass uncertainty of 0.5 GeV is excluded.

<sup>(†)</sup>In units of  $10^{-5}$ .

 $^{(\triangle)}$ Rescaled due to  $\alpha_s$  dependence.

#### [Gfitter Collaboration]

Prof. Dr. Matthias Schott

# PDF Related Measurements (1/2)

JG

JOHANNES GUTENBERG

- All single boson production crosssections restrict PDFs
  - Differential W and Z boson production (also at high rapidities LHCb)
- Precision more important than center of mass energy



# PDF Related Measurements (2/2)



- Heavy flavor in the final state of W/Z bosons allows to test heavy flavor PDFs
- Even not all 7 TeV measurements are yet published
  - 35pb<sup>-1</sup> Analysis from ATLAS predicts enhanced strangeness



[Phys.Rev.Lett. 109 (2012) 012001]