

Search for new physics in bosonic final states at the LHC

Andreas Hinzmann University of Zurich (UZH)

on behalf of the ATLAS, CMS and LHCB collaborations

at

LHCP2016: Fourth annual Large Hadron Collider Physics, 13-18 Jun 2016, Lund University

New physics with bosonic final states

- Fundamental questions
 - Hierarchy between the electroweak and Planck scale?
 - Quantum corrections to the Higgs mass?

• Popular solutions predict signatures with γ , W, Z and H bosons

The LHC at 13 TeV

- Data collected by ATLAS/CMS
 - in 2012: 8 TeV, 20/fb
 - in 2015: 13 TeV, 3/fb

- Similar sensitivity >~1 TeV:
 - σ(qq)×⊥ (2012→2015) = 0.5
 - $\sigma(gg) \times \mathcal{L} (2012 \rightarrow 2015) = 0.8$

• 2015 LHC data allows discoveries of TeV new physics signatures

Boosted bosons from TeV new physics

Boosted bosons from TeV new physics

Recent excitement in di-boson searches

- 2015+2016 LHC data can tell if they are real
- If 750 GeV is real, there must me more new physics

Recent results – contents of the talk

Signature	Final state	ATLAS	CMS	
YΥ	YY combination	ATLAS-CONF-2015-081 10.1103/PhysRevLett.113.171801 10.1103/PhysRevD.92.032004 arXiv:1606.03833	CMS-PAS-EXO-15-004 CMS-PAS-EXO-12-045 10.1016/j.physletb.2015.09.062 arXiv:1606.04093	
γZ	γll γqq combination	ATLAS-CONF-2016-010 10.1016/j.physletb.2014.10.002 ATLAS-CONF-2016-010	CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021	
WW/WZ/ZZ	qqqq qqll qqlv	arXiv:1606.04833 arXiv:1606.04833 arXiv:1606.04833	CMS-PAS-EXO-15-002 10.1007/JHEP08(2014)174 CMS-PAS-EXO-15-002 CMS-PAS-B2G-16-004	
	qqvv combination	arXiv:1606.04833 arXiv:1606.04833	CMS-PAS-EXO-15-002	
WH/ZH	bbll bblv bbvv combination	ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074	CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003	
Combination	of VV/VH		CMS-PAS-B2G-16-007	
нн	bbbb	arXiv:1606.04782	CMS-PAS-EXO-12-053	
B⁰→K*⁰χ	K ^{∗0} II	LHCB: 10.1103/PhysRevLett.115.161802		

- Listing only latest (**new/submitted**) results covering TeV resonances
- 8 TeV results indicated in italic
- More di-boson searches in context of SUSY/2HDM covered by Higgs BSM

arXiv:1606.03833 arXiv:1606.04093

Di-photon (ATLAS)

- Spin-0 analysis: two photons with $E_T > 40(30)$ GeV and $E_T > 0.4(0.3)m_{yy}$
 - Background from signal + smooth background fit $f_{(k)}(x; b, \{a_k\}) = N(1 x^{1/3})^b x^{\sum_{j=0}^k a_j (\log x)^j}$, $x = \frac{m_{\gamma\gamma}}{\sqrt{s}}$, k = 0
- Spin-2 analysis: two photons with E_T>55 GeV
 - $\gamma\gamma$ background from NLO prediction, γ +jets, dijets from isolation sidebands
- Scan over resonance mass and width Γ/M≤10%

arXiv:1606.03833 arXiv:1606.04093

Di-photon (CMS)

Submitted

- Common spin-0 and spin-2 analysis
 - Two photons with E_{T} >75 GeV
 - At least one in ECAL barrel, two event categories according to second photon in barrel or endcap
 - Data with magnet on (2.7/fb) and off (0.6/fb)
 - Background from signal + smooth background fit • $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$
- Scan over resonance mass and width $\Gamma/M \le 5.6\%$

16. June 2016

Andreas Hinzmann

Andreas Hinzmann

- Similar significances under spin-2 hypothesis
- ATLAS: $3.9\sigma(2.1\sigma)$ local (global) at 750 GeV 6% width spin-0
- CMS: $2.9\sigma(<1\sigma)$ local (global) at 760 GeV 1.4% width spin-0

Di-photon 13 TeV results

10

Di-photon 8+13 TeV results

- ATLAS: 8 and 13 TeV data consistency
 - 1.2σ for gluon-fusion spin-0 at 750 GeV
 - 3.3σ for qq-annihilation spin-2 at 750 GeV
- CMS: 8 and 13 TeV data analyses combination
 - 3.4σ (1.6σ) local (global) for spin-2 RSG (mix of qq-annihilation and gluon-fusion) at 750 GeV

Submitted

Andreas Hinzmann

arXiv:1606.03833

arXiv:1606.04093

16. June 2016

ATLAS-CONF-2016-010 CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021

Z+photon \rightarrow qq γ

- Spin- $0 \rightarrow Z\gamma \rightarrow qq\gamma$
- $\gamma p_T > 180 \text{ GeV and } p_T > 0.34 \text{ M}_{Zv}$
- Z identification: R=0.8 jet p_T>200 GeV, 75<m_{pruned}<105, subjet b-tag (L/M)
- Background estimated from smooth fit:

Andreas Hinzmann

ATLAS-CONF-2016-010 CMS-PAS-FXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021

Z+photon 8+13 TeV results

- Spin- $0 \rightarrow Z\gamma \rightarrow qq\gamma$: higher acceptance \rightarrow best at high mass
- Spin- $0 \rightarrow Z\gamma \rightarrow II\gamma$: lower trigger threshold, less background \rightarrow best at low mass
- No significant excess observed
 - Set 95% CL limits for two resonance widths scenario (Γ/m=0.014%, 5.6%)
- Significant gain from 8+13 TeV combination CMS Preliminary 19.7 fb⁻¹ (8 TeV) + 2.7 fb⁻¹ (13 TeV) σ_{13 TeV}(pp→A+X→Zγ+X) [fb] 350 Narrow Signal Model 8 TeV only 95% CL limit 300 ······ Median Expected 250 68% Expected 95% Expected 200 Zγ→IIγ (CMS) 50 8+13 TeV 13 TeV only. 100 50 New 0 300 400 1000 2000 Resonance Mass [GeV]

Andreas Hinzmann

95% CL limit on σ(pp→X) × BR(X→Z_Y) [fb]

arXiv:1606.04833 CMS-PAS-EXO-15-002

$VV \rightarrow qqqq$

- W/Z-jet identification: R=0.8, jet 65<m_{pruned}<105 GeV
 - 3 categories according to m_{J1} and \dot{m}_{J2} \rightarrow optimal sensitivity to WW, ZZ and WZ (30% improvement)
 - 2 categories in $\tau_2/\tau_1 \rightarrow$ high purity at low \dot{m}_{JJ} , high efficiency at high m_{JJ}
- $|\eta_{J1}-\eta_{J2}|$ <1.3 to supress QCD background
- Background from signal + smooth background fit

Dijet channel

arXiv:1606.04833 CMS-EXO-PAS-15-002 CMS-PAS-B2G-16-004

$VV \rightarrow vvqq/lvqq/llqq$

- Z/W-jet ID: R=1.0 jet $p_T^{J}>200 \text{ GeV}$, $D_2^{\beta=1}$ (50% eff)
 - 2 separate analyses in m_{W/Z}±13-15 GeV
- $Z \rightarrow vv$ analysis: $E_T^{miss} > 250 \text{ GeV}, \Delta \phi (E_T^{miss}, jets) > 0.6, p_T^{miss} > 30 \text{ GeV}$
- W \rightarrow µv/ev analysis: p_T^{µ/e}>25 GeV, E_T^{miss}>100 GeV, p_T^W>200 GeV and >0.4m_{IvJ}, b-tag-veto
- Z→µµ/ee analysis: p_T^{µ/e}>25 GeV, 84<m_{ee}<99 (66<m_{µµ}<116), p_T^Z>0.4m_{llj}
- Backgrounds from V+jets (ttbar) estimated from data in m_J (b-tag) sidebands (and N_µ for vv)

Events / 10 Ge/ Data ATLAS Preliminary 700 <u>–</u> W+jets √s = 13 TeV, 3.2 fb⁻¹ Top guark 600 F Dibosons Z+jets 500 F ////// SM tot. unc. → W 400F Z signal region 300 F 200 100 Data/MC 120 140 160 60 80 100 180 220

Submitted

m, leading [GeV]

15

16. June 2016

Andreas Hinzmann

arXiv:1606.04833 CMS-EXO-PAS-15-002 CMS-PAS-B2G-16-004

Spin-1 VV 13 TeV results

arXiv:1606.04833 CMS-EXO-PAS-15-002 CMS-PAS-B2G-16-004

Spin-0/2 VV 13 TeV results

ATLAS-CONF-2015-074 CMS-PAS-B2G-16-003

WH / ZH \rightarrow vvbb/lvbb/llbb

- Higgs identification: $p_T^{J}>200 \text{ GeV}$, $105 < m_J < 135$
 - 1 and 2 subjet b-tag categories
- vv analysis: E_T^{miss} >200 GeV, $\Delta \phi(E_T^{miss}, J)$ >2, b-tag-veto
- μv/ev analysis: p_T^µ>55 GeV (p_T^e>135, E_T^{miss}>80 GeV), p_T^W>200 GeV, b-tag-veto
- μμ/ee analysis: p_T^μ>55 (p_T^e>135) GeV, 70<m_{II}<110, p_T^Z>200 GeV, Δφ(II,J)>2.5
- Main backgrounds from V+jets (ttbar) estimated from data in m_J (b-tag-veto) sidebands

16. June 2016

Andreas Hinzmann

WH / ZH 13 TeV results

- No significant excess observed over background
- Exclude spin-1 $m_{W'}$ <2.2 TeV and $m_{Z'}$ <1.7 TeV in HVT model B

Andreas Hinzmann

16. June 2016

ATLAS-CONF-2015-074 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-007 arXiv:1606.04833

- Data collected by ATLAS/CMS
 - in 2012: 8 TeV, 20/fb
 - in 2015: 13 TeV, 3/fb

- qq-annihilation production: Run 2 better than Run 1 above ~1.5 TeV
- gg-fusion production: Run 2 better than Run 1 above ~0.5 TeV

- Most significant excess from Run 1 in CMS: 2.2 σ local for W' \rightarrow WH@ 1.8 TeV
- Combining all 8 TeV VV+VH searches: remains 2.2σ in W' hypothesis
- Combining all 8+13 TeV VV+VH searches: reduced to 0.9σ in W' hypothesis

New

CMS-PAS-B2G-16-007 VV+VH 8+13 TeV combination

• W', Z', Heavy Vector Triple (W'+Z') and Bulk Graviton interpretations

particle	spin	charge	decay	production	W/Z polarization
W′	1	charged	mainly WZ, WH	mainly $q\overline{q}^{(\prime)}$	mostly longitudinal
Z′	1	neutral	mainly WW, ZH	mainly $q\overline{q}$	mostly longitudinal
G _{bulk}	2	neutral	mainly WW, ZZ	mainly gg	mostly longitudinal

$HH \rightarrow bbbb$

Submitted

- Spin 0/2→HH→bbbb
- Resolved analysis:
 - 4 b-tag jets, m_{ii}~m_H
- Boosted analysis:
 - Two R=1.0 jets, m_J~m_H
 - 3-4 b-tagged matched trackjets
- Main backgrounds from multijets and ttbar estimated from data N_{b-tags} and m_{jj} sidebands
- Limit on non-resonant HH production

 $\sigma(pp \to hh \to b\bar{b}b\bar{b}) < 1.22 \text{ pb} \quad (SM:\sigma(pp \to hh \to b\bar{b}b\bar{b}) = 12.9^{+1.5}_{-1.6} \text{ fb})$

23

16. June 2016

Andreas Hinzmann

10.1103/PhysRevLett.115.161802

- Search for low mass boson $\chi \rightarrow \mu \mu$ with coupling to top quark
- Sensitive to χ decay time reconstructing $K^{*0} \rightarrow K^+\pi^-$ decay vertex
- Background rejection with MVA selection
- Background estimated from neighboring 4-6 bins
- Most stringent constraints to date covering masses 200-4400 MeV

Conclusions

- Combining 8 and 13 TeV data, conclude a solid "maybe" on 750 GeV
 - LHC already delivered another 4/fb of data in 2016
 - \rightarrow better understanding soon!
- Di-boson resonance masses >TeV explored in all important final states
 - Interpretations in spin-0, spin-1 (HVT), spin-2 (RSG) scenarios
- Analyses with 13 TeV data supersede 8 TeV searches at >TeV masses
 - Most stringent mass limits on W'/Z'/G^{*} resonances
- Combination of 8+13 TeV VV+VH searches disfavors bump at 2 TeV
 - Final confirmation with 2016 data

Backup

Jet reconstruction in CMS

Detector	p _T -resolution	η/Φ-segmentation	
Tracker	0.6% (0.2 GeV) – 5% (500 GeV)	0.002 x 0.003 (first pixel layer)	
ECAL	1% (20 GeV) – 0.4% (500 GeV)	0.017 x 0.017 (barrel)	
HCAL	30% (30 GeV) – <mark>5%</mark> (500 GeV)	0.087 x 0.087 (barrel)	

8 vs. 13 TeV comparison

- Data collected by ATLAS/CMS
 - in 2012: 8 TeV, 20/fb

- qq-annihilation production: Run 2 better than Run 1 above ~1.5 TeV
- gg-fusion production: Run 2 better than Run 1 above ~0.5 TeV

New at

LHCP

ATLAS-CONF-2016-010 CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021

Z+photon $\rightarrow II\gamma$

- Spin-0→Zγ→IIγ
- lepton $p_T^{e/\mu}>25(20)$ GeV, shrinking isolation cone, $50 < m_{\parallel} < 130$ GeV
- $\gamma p_T > 40$ GeV and $p_T > 0.27$ M_{Zy}, $\Delta R(\gamma, I) > 0.4$
- Background estimated from smooth fit:

Andreas Hinzmann

ATLAS-CONF-2016-010 CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021

Z+photon $\rightarrow II\gamma$

- Spin-0→Zγ→IIγ
- lepton $p_T^{e/\mu}>25(20)$ GeV, shrinking isolation cone, $50 < m_{\parallel} < 130$ GeV
- $\gamma p_T > 40$ GeV and > 0.27 M_{Zv}, $\Delta R(\gamma, I) > 0.4$
- Background estimated from smooth fit:

$$f(m_{Z\gamma}) = m_{Z\gamma}^{a+b\log m_{Z\gamma}}$$

