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The Quest for Luminosity

 To maximize L:  

 Many bunches (k)  tight bunch spacing

 Many protons per bunch (Nb)

 Small emittance e*

 Small b*

 Maximize the parameter F (<1) depending 

on the crossing angle

High beam “brightness” Nb/e*

(particles per phase space volume) 

 Injector chain performance !

 Preservation in the LHC !!

LHC Optics/Configuration
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What limits b*?

 The triplet quadrupoles in the high luminosity IRs define the 

machine aperture limit for squeezed beams, b* is 

constrained by:

 the beam envelope

 the crossing angle 

John Jowettbtriplet ~ 5 km

b* = 40 cm
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e = 3.75 mm

q = 185 mrad

b* = 0.4 m  F = 0.73

@6.5 TeV

Crossing angle

 Needed to avoid parasitic 

collisions and minimize beam-

beam effects

 Drawbacks:

 luminosity geometric reduction factor 

due to bunch length s and crossing 

angle q becomes significant for low b* 

(small beam sizes)

 Reduction of the aperture
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Wake fields and Impedances

 Intense bunches generate electromagnetic fields when passing 

inside a structure (in particular Carbon collimators – opening of O(1 

mm)!!!)

 → results in wake fields coupling with the beam and generating 

beam instabilities and emittance blow-up

 Avoid the abrupt transition for the beam fields at the location of the 

beam passage (taper)

 Reduce the resistivity of the material

Abrupt transition With taper

B. Salvant
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Electron cloud effects

Possible consequences:
– instabilities, emittance growth, desorption, vacuum degradation, background

– energy deposition in cryo surfaces

Electron bombardment of a surface has been proven to reduce SEY of a 

material as a function of the delivered electron dose. This technique, known as 

scrubbing, provides a mean to suppress electron cloud build-up.

Secondary Emission Yield [SEY]

SEY>SEYth  avalanche effect (multipacting)

G. Iadarola, G. Rumolo
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Summary: 2010-2016

Parameter 2010 2011 2012 2015-16 Nominal

Energy [TeV] 3.5 3.5 4.0 6.5 7.0

Nb [1011 p/bunch] 1.2 1.45 1.6 1.15 1.15

k (no. bunches) 368 1380 1380 2244/2040 2808

Bunch spacing [ns] 150 75 / 50 50 25 25

Stored energy [MJ] 25 112 140 280 362

e* [mm] 2.4 2.4 2.5 3.5 3.75

b* [m] 3.5 1.51 0.6 0.80.4 0.55

Full crossing angle [mrad] 200 240 290 290370 285

L [1034 cm-2s-1] 0.02 0.35 0.76 0.5/0.9 1.0

Beam-beam parameter/IP (DQbbho) -0.005 -0.006 -0.007 -0.003 -0.003

Average Pile-up @ beg. of fill 8 17 38 28 26
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Limitations: Triplet radiation damage
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MCBX-1
MCBX-2

MQSX
MCTX nested in MCBX-3

MCSOX

F. Cerutti, N. Mokhov, L. Esposito,… 

Q2

27 MGy

MCBX3 

20 MGy

Cold bore 

insulation

≈ 35 MGy
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Limitations - Magnets

 Max. heat load due to luminosity 

debris on the cold mass of the inner 

triplets as a result of the reduction 

of the diameter of the bayonet heat 

exchanger (in 2007)

 Maximum instantaneous luminosity 

~1.7×1034 cm-2s-1
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Timeline & Goals
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HL-LHC Goals

 Determine and implement a hardware configuration and 

a set of beam parameters allowing the LHC to reach the 

following targets:

 Prepare machine for reliable operation beyond 2025 and up to 

~2040  Remove LHC technical bottlenecks and limitations

 Enable the production of 3000 fb-1 by 2037  250 fb-1/yr, 

 operating at max. average pile-up m ~ 140 ( peak luminosity of 

~5×1034 cm-2 s-1) compatibly with detector capabilities

 Ten times the luminosity reach of first 10 years of LHC 

operation!!
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Ingredients for the Upgrade

• Operation at pile-up/pile-up density limit (set by the 

experiments) by choosing parameters that allow higher 

than design pile-up:

 Beam brightness and in particular bunch population to sustain 

burn-off over long periods  LHC Injector Upgrade

 Maximize number of bunches to minimize pile-up  25 ns

 Low b* optics 

 Large crossing angle to minimize the beam-beam effects

 Fight the reduction factor F by crab crossing

 Improve ‘Machine Efficiency’  minimize the number of 

unscheduled beam aborts
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L [1034 cm-2s-1]

t [h]

Virtual peak 

luminosity (F=1)

leveling at 

5x1034cm-2s-1

teff=15 h, Tta=5 hleveling at 

2.5x1034cm-2s-1

teff=30 h, Tta=5 h

Ingredients for the Upgrade

F. Zimmermann
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HL-LHC Parameters

Parameter Nominal HL-LHC

Bunch population Nb [1011] 1.15 2.2

Number of bunches 2808 2748

Beam current [A] 0.58 1.12

Stored Beam Energy [MJ] 362 677

Full crossing angle [mrad] 285 590

Beam separation [] 9.9 12.5

Min b* [m] 0.55 0.15

Normalized emittance en [mm] 3.75 2.5

r.m.s. bunch length [m] 0.075 0.081

Virtual Luminosity (w/o CC) [1034 cm-2s-1] 1.2 (1.2) 21.3 (7.2)

Max. Luminosity [1034 cm-2s-1] 1 5.1

Levelled Pile-up/Pile-up density [evt. / evt./mm] 26/0.2 140/1.25
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Challenges

 Low b* optics and large aperture triplets

 Operation of the crab cavities in a high intensity hadron machine

 Operation with large stored energy  halo, losses  collimation

 Beam stability and minimization of impedance

 Electron cloud mitigation with 25 ns beams

 Reliability!!
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Low b*

 An “almost” standard 

squeeze (local to IP1/5), 

(pre-squeeze)

 A further reduction of b*

(squeeze): acting on IR2/8 

for squeezing IR1 and IR4/6 

for IR5, inducing b-beating in 

adjacent sectors  large 

crossing angle  larger 

aperture triplet (reduced 

gradient  longer) and 

matching section

IR4 IR5 IR6

ATS=Achromatic Telescopic Squeeze

b* [m]

S. Fartoukh
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From LHC to HL-LHC triplets

LHC (USA & JP, 5-6 m)

70 mm, Bpeak 8 T, 

NbTi

1992-2005

LARP TQS & LQ (4m)

90 mm, Bpeak 11 T

Nb3Sn

2004-2010

LARP HQ, 120 mm, 

Bpeak 12 T

Nb3Sn

2008-2014

LARP & CERN

MQXF,150 mm, 

Bpeak 12.1 T

Nb3Sn

2013-2020
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Shielding against Radiation Damage

 Tungsten shielding on the beam 

screen 16 mm in Q1 and 6 mm 

elsewhere

 More than 600 W in the cold

masses as well as in the beam

screen (i.e. 1.2-1.3 kW in total)!!

 New Cryogenics plants

 Expect same integrated radiation

dose in HL-LHC after 3000 fb-1 as

in LHC after 300 fb-1!!
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The HL-LHC Interaction Region

LHC

HL-LHC

IP1&5

IP1&5
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Crab cavities

 Crab-cavities (CC) to deflect the bunch head and tail 

transversely to counteract the luminosity loss from 

the large crossing angles and small beam sizes at 

HL-LHC and to reduce pile-up density

 On both sides of IP1 and IP5

 CCs have never been used in a hadron machine -

there are many challenges: noise on the beam, 

machine protection etc.  SPS tests in 2018 

Staged Installation (2 crab cavities/IP side/beam)

no CC

f 590 mrad
s
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Collimation Upgrade

 Worry about beam losses:
 Failure Scenarios  Local beam Impact

 Equipment damage 

 Machine Protection

 Lifetime & Loss Spikes  Distributed losses
 Magnet Quench

 Radiation to Electronics and Single Event Upsets

 Machine efficiency

 New collimators in the Dispersion Suppressors 
around the betatron collimation section (LSS7)

 Hollow electron lens for halo depletion (not yet in 
the baseline but being considered)
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Dispersion Suppressor Collimators with 

11 T Dipoles

Same 15660 mm length between interconnect planes as an LHC MB 

Connection cryostat between 

two 11 T magnets to integrate 

the collimator

LHC MB replaced by 3 cryostats + collimator, all independently supported and aligned:

Same interfaces at the 

extremities: no 

changes to nearby 

magnets, standard 

interconnection 

procedures & toolingD. Duarte
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Low Impedance Collimators in LSS7

New material: MoGr

S. Redaelli, A. Bertarelli
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25 ns operation (e-cloud)

 HL-LHC triplets/matching section + 

Triplet/D1 in IP2 and 8: 

 Expect no suppression of the electron cloud 

with scrubbing   a-C coatings (SEY ~ 1.1) to 

minimize heat load on the beam screen.

 Laboratory and in-situ tests (SPS) 

ongoing to characterize the 

properties of these coatings at room 

and cryogenic temperatures

 Irradiation tests to evaluate aging 

effects.

G. Iadarola, G. Rumolo

P. Chiggiato, M. Taborelli et al.
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Radiation to Electronics (R2E)

 R2E consolidation during LS1 not sufficient 

for the HL-LHC era (~2 fb-1/ day)  1 

dump/day due to SEU

 PC far from tunnel  SC links (HTS)

 QPS systems out of the tunnel

M. Brügger

A. Ballarino
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Civil engineering

P. Fessia
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Concluding remarks

 The progress in the performance of the LHC has been so far 
breath-taking

 Some of the (beam dynamics) challenges and limitations have been 
outlined

 We are exploring (and mastering) higher energies and operation with 25 
ns (all but trivial). Aim for 300 fb-1 by the end of Run 3

 This experience is providing critical input for the LHC upgrade

 Luminosity performance and choices for the upgrade are now 
constrained by the acceptable detector pile-up/pile-up density

 To reach 3000 fb-1 by ~2037 we are pushing even further the above 
challenges…

 New technologies are being developed (with enormous progress in recent 
years) to achieve these parameters
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25 ns operation (e-cloud)

 Relies on scrubbing to suppress electron cloud in 

the dipoles (heat load and beam stability)

H. Damerau, O. Dominguez,  

G. Iadarola, G. Rumolo

 Alternatives:

 ‘ad-hoc’ 25 ns filling schemes to 

minimize electron cloud build-up 

(e.g. 8b+4e scheme)  reduction 

of the integrated luminosity to 

190 fb-1/y  (w.r.t. ~260 fb-1 for 

nominal scenario) but with longer 

fills (9 to 10 h)
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Halo control: hollow e-lens

 Potential of hollow e-lens:

 Control the halo dynamics without affecting the beam 

core;

 Control the time-profile of beam losses (avoid loss 

spikes);

 Control the steady halo population (crucial in case of 

CC fast failures).
S. Redaelli

Collaboration with FNAL
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200 MHz 

 Longer bunches captured on a 200 

MHz system could significantly reduce 

electron cloud effects:

 Strong beneficial effect on dipoles 

(main limitation)

 Weak effect on quadrupoles, even 

detrimental for low SEY

 Negligible reduction of the integrated 

luminosity

 Beam-beam effects studied and did 

not show any show-stopper

 Need to take a decision by 2018 in 

order to be ready for LS3

Dipoles

Quadrupoles

G. Iadarola, G. Rumolo, R. Tomas
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Standard 25 ns 8b+4e

8b+4e: a validated alternative

G. Iadarola, G. Rumolo
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β* levelling

• Successful test (at low intensity) 

with 3 points collided and 

squeezed at the same time:

• Reproducible and 

deterministic

• Change in beam separation 

below 1 sigma (green band) 

in most cases.

• Good agreement between the 

applied luminosity trims and 

separation values tracked by 

the BPMs (IP1/IP5)  can be 

used for active feedback 

(next step)
A. Gorzawski, J. Wenninger
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11 T dipole recent results

 Total number of quenches at 1.9 K: 86

 Very limited detraining after thermal cycles, apart from coil 107

 94 % of short sample reached.

Together with MQXFS test and first 

HO Corrector (SuperFerric) has 

been highly publicized at CERN
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TRIPLET

 Nb3Sn quad in collaboration with US, 11.5 T peak field
 Q1/Q3 from US, Q2a Q2b from CERN [see P. Ferracin talk]

 Same cross-section, common program for short model

 Status: model
 First short model successfully tested in March (~6 months 

delay)
 Ultimate reached, perfect memory after thermal cycle

 Included two CERN and two LARP coils
 Second test with larger load in July

 Status: prototype
 In BNL mirror test in July (4.2 m)

 At CERN tooling being commissioned

 Winding of 7 m coil (copper) started in 2016 at CERN

MQXFS1a test result [G. Chlachidze, et al.]
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Baseline upgrades

Ion physics debris: 
DS collimation

Cleaning: DS coll. + 11T
dipoles, 2 units per beam

Low-impedance, high 
robustness secondary 
collimators: Mo coated MoGr

Completely new layouts

Novel materials: TCTs in CuCD

IR1+IR5, per beam:

4 tertiary collimators
3 physics debris collimators 

fixed masks
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LHC layout

 Total length: ~26.7 km

 8 arcs (aka sectors): 

~2.8 km each

 8 long straight sections: 

~700 m each

 2-in-1 magnet design 

with separate vacuum 

chambers

 p-p, ion/ion, or p/ion 

collisions

 beams cross in 4 points

RF
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Interaction regions geometry

 In the IRs, the beams are first combined into a single common 

vacuum chamber and then re-separated in the horizontal plane,

 The beams move from inner to outer bore (or vice-versa),

 The triplet quadrupoles are used to focus the beam at the IP.

194 mm

~ 120 m

Common vacuum chamber

D2

D1 D1

D2

Triplet Triplet

D1,D2 : 

separation/recombination dipoles

Machine geometry in H plane

IP

beam1

beam1

beam2

beam2
~ 45 m
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Separation and crossing

 Because of the tight bunch spacing and to prevent undesired 

parasitic collisions in the common vacuum chamber:

 Parallel separation in one plane, collapsed to bring the beams in collision

 Crossing angle in the other plane

~ 8 mm

Not to scale !

q

4 mm (450 GeV)

2 mm (6.5 TeV)
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Beam-beam effects

 Strong non linear fields when 

counter-rotating beams share 

vacuum chamber. 

  spread in betatronic

frequencies  risk of overlapping 

resonances driven by magnetic 

errors

 Minimize magnetic field errors 

and noise  Paid off for the LHC

 Devise correction schemes and 

sorting  Paid off for the LHC

 Initially expected to have limit at 

DQBB ~ 0.003/IP  exceeded by 

a factor 2

Head-on

Long-range

∆𝐐𝐛𝐛 ∝
𝐍𝐛

𝛆𝐧
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Wake fields and instabilities

• Wake fields can couple the head and tail of a bunch 

or consecutive bunches leading to instabilities

s

v
~36 cm ~15 m

~1.6×1011 p
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Cryo power limitation 

in Pt 4,  

interdependency of 

different systems, 

reduced flexibility and 

no/little redundancy 

Limitations: Cryogenics

IT IT

ITIT

IT

ITIT

IT

RF

RF
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