A Large Ion Collider Experiment

NEW RESULTS RELATED TO QGP IN SMALL SYSTEMS WITH ALICE

Vytautas Vislavicius on behalf of ALICE collaboration

ALICE | LHCP | 2016-06-14 | Vytautas Vislavicius (vytautas.vislavicius@cern.ch)

Introduction and Motivation

Motivation

- pA and AA: qualitatively same features in several observables of bulk particle production
- AA:
 - Strangeness enhancement/canonical suppression in small systems
 - Baryon/meson ratio enhancement

- pA:
 - Progressive release of canonical suppression with increasing system size/strangeness enhancement
 - Baryon/meson ratio qualitatively similar to AA

PID & Multiplicity estimation

Detectors used for PID:

- Inner Tracking System (ITS)
 - also: trigger, tracking, vertex
- Time Projection Chamber (TPC)
 - also: tracking
- Time-Of-Flight (TOF)

Multiplicity estimation: ^{UNI}

- V0M multiplicity estimator at forward rapidities
 - Two plastic scintillators:
 V0A (2.8 < η < 5.1)
 V0C (-3.7 < η < -1.7)
 - VOM = VOA + VOC
 - Used in order to minimize the auto-correlation biases

A Large Ion Collider Experiment

RESULTS

p_{T} -differential spectra – pp at \sqrt{s} = 7 TeV

Measure a comprehensive set of light-flavoured particles in a wide $p_{\rm T}$ range, interested in radial flow and chemical composition of events

- Hardening with increasing multiplicity
- Flattening at high p_{T}

p_{T} -differential spectra – pp at \sqrt{s} = 7 TeV

LUND UNIVERSITY

Similar effects for strange-hadron spectra

p_{T} -differential spectra – pp at \sqrt{s} = 7 TeV

And multi-strange hadrons

p_{T} -differential ratios vs. multiplicity

Baryon/meson ratios:

- Qualitatively similar trends in all systems
- Depletion at low p_⊤, enhancement at intermediate
- Different magnitudes, but also different multiplicity densities

p_{T} -differential ratios vs. multiplicity

- Enhancement in Pb-Pb explained by coalescence/radial flow, but also seen in p-Pb and pp
- Mass ordering in Pb-Pb is described by hydrodynamical evolution of the system, which may require a fireball in local thermal (kinetic) equilibrium

ALI-PREL-98059

0.12 ₽

0.11₽

0.1

34

 $\langle dN_{ch}/d\eta \rangle_{|\eta| < 0.5}$

20

10

 $10^{2} 2 \times 10^{2}$

10² 2×10²

Integrated yield ratios: comparison between systems • Both K/π and p/π ratios consistent between different colliding systems for similar $dN_{ch}/d\eta$

0.2 0.08 ц Ч 'κ V0 Multiplicity Classes LICE V0 Multiplicity Classes 0.19 (K⁺ + K) / (π⁺ + 0.075 p-Pb, $\sqrt{s_{NIN}} = 5.02 \text{ TeV}$ p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ pp, *\s* = 7 TeV 0.18 F Ë 0.07 PLB 728 (2014) 25-38 Preliminary PLB 728 (2014) 25-38 Preliminarv 0.17 Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ **Q** 0.065 0.16 PRC 88, 044910 (2013) PRC 88, 044910 (2013) 0.06 0.15 Q 0.14 0.055 0.13 0.05

 $10^{3} 2 \times 10^{3}$

0.045

0.04

ALI-PREL-98063

34

2

10

20

 $10^{3} 2 \times 10^{3}$

 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle_{|\eta| < 0.5}$

$p_{\rm T}$ -integrated yield ratios vs. multiplicity

Integrated yield ratios: comparison between systems

- Both K/ π and p/ π ratios consistent between different colliding systems for similar dN_{ch}/d η
- Similar behaviour for multi-strange baryons
- Particle composition seems to be driven by $dN_{ch}/d\eta$

Baryon-to-meson ratios: pp & p-Pb comparison L

pp and pA ratios normalized to multiplicity-integrated ratios:

- Protons: consistent with unity
 - Enhancement not related to baryon number
- Slope increases with strangeness content

Comparison to Thermal Model calculations

Another look into pp and pA

- Λ/π , Ξ/π , Ω/π approaching grand canonical saturation in same predicted way
- Consider strange hadron to π ratio at high multiplicity limit
- Trend for Λ/π , Ξ/π , Ω/π roughly described by THERMUS
- Reminder: Trends not reproduced by existing Pythia tunes

[Phys.Lett. B758 (2016) 389-401]

Nuclear Modification Factor

Pb-Pb:

- Mass-ordered suppression of soft hadrons
- Species-independent suppression of hard particles

p-Pb

- No suppression above *p*_T≈ 2 GeV/c
- Consistent with unity for all species above p_T ≈ 6 GeV/c
- Cronin peak/mass ordering?

A Large Ion Collider Experiment

Summary

Summary

The production of identified hadrons as a function of event multiplicity in pp collisions at \sqrt{s} = 7 TeV has been measured and reported

- Measured p_{T} -differential hadron spectra harden with multiplicity
- Ratios of p_{T} -differential spectra to minimum bias flatten out at high p_{T}
- p_{T} -differential baryon-to-meson ratios show significant evolution from low to high multiplicity; same qualitative behaviour observed in p-Pb and Pb-Pb collisions
- Strange-hadron to pion ratios:
 - Qualitatively similar among pp and p-Pb
 - Enhanced strange particle production with multiplicity observed
- Suppression of high p_{T} hadrons present in Pb-Pb, not in p-Pb

A Large Ion Collider Experiment

Backup

The ridge

Also, double-ridge ٠ (but not in this talk)

ALICE

$< p_{T} >$ vs. multiplicity

The hardening of spectra can be quantified by looking at the $\langle p_T \rangle$ as a function of multiplicity

- Rising trend of <p_T> with multiplicity for all identified particles
- Mass ordered
- Logarithmic fit to guide the eye

ITS, TPC and TOF performance in \sqrt{s} = 7 TeV pp collisions

ITS: π: [0.1 – 0.6] GeV/c K: [0.2 – 0.6] GeV/c p: [0.3 – 0.6] GeV/c

π: [0.5 – ~3] GeV/*c*

K: [0.6 – ~3] GeV/c

p: [0.8 – ~4] GeV/c

TOF:

TPC:

π: [0.2 – 0.5] GeV/c K: [0.25 – 0.6] GeV/c p: [0.4 – 0.8] GeV/c + relativistic rise (s) $\frac{200}{180}$ ALICE pp, 180 ALICE pp, 1s = 7 TeV140 K P d 140 K P d 120 0 140 0 100 0 100 0 100 0 100 0 100 p (GeV/c) Fur.Phys.J. C75 (2015) no.5, 226]

Topological PID

- Topological PID of weakly ۰ decaying strange baryons:
 - $\Lambda = |uds>$

 $\Xi = |dss>$

 $\Omega = |sss>$

400⊢

$< dN_{ch}/d\eta >$ in VOM bins

V0M (%)	$< dN_{ch}/d\eta >$	V0M (%)	$<$ d $N_{\rm ch}$ /d η >
0 - 0.1	25.3 ± 0.8	0.1 - 1	20.8 ± 0.6
1 - 5	16.5 ± 0.5	5 - 10	13.5 ± 0.4
10 - 15	11.5 ± 0.3	15 - 20	10.1 ± 0.3
20 - 30	8.4 ± 0.3	30 - 40	6.7 ± 0.2
40 - 50	5.4 ± 0.2	50 - 70	3.9 ± 0.1
70 - 100	2.3 ± 0.1	0 - 100	6.0 ± 0.2

p_{T} -differential ratios vs. multiplicity

K/ π , *p*/ π ratios:

- p/π shows much stronger variation with multiplicity than K/π
 - Mass ordering

Integrated yield ratios vs. multiplicity

Integrated yield ratios: comparison between systems

- Levy-Tsallis fits to p_T -differential spectra (serves as extrapolation to $p_T = 0$; negligible contribution from $p_T \rightarrow \infty$ extrapolation)
- Both K/ π and p/ π ratios consistent between different colliding systems for the simmilar dN_{ch}/d η

***Multiplicity uncorrelated errors are not shown here, but will be included in the forthcoming publication

Comparison to MC event generators

LUND UNIVERSITY

Integrated yield ratios:

- 4 different Pythia tunes were used
- Color reconnection has similar effect in all tunes
- None of the tunes can describe both K/π and p/π ratios quantitatively. This holds for tunes with and without color reconnection

Comparison to MC event generators

Ratios vs. multiplicity in pp:

- Smooth trend $pp \rightarrow pA \rightarrow AA$ with multiplicity •
- Λ/π and Ξ/π reach predicted GC saturation • values
- Ω/π stays below •
- Pythia 6 & 8 do not describe the data •
- Color reconnection has little impact on predicted multiplicity dependence of strangeness production

 $(\Xi^+ \overline{\Xi}^+) / (\pi^- + \pi^+)$

з

1

ALI-PREL-98750

