Searches for Dark Matter production with ATLAS (MET+X)

LHCP, Lund
Ruth Pöttgen, on behalf of the ATLAS Collaboration
17 June 2016

Why Dark Matter?

- compelling evidence for existence of non-luminous matter on largely different cosmological scales
 "Dark Matter"
- ▶ ~1/4 of the universe's matter-energy budget
 - ~5 times as much as 'normal' matter

Planck result

Ruth Pöttgen

Dark Matter Searches

- no viable candidate within Standard Model (SM)
- popular generic class of <u>new particles</u>: weakly interacting massive particles (**WIMP**s)
 - broad search programme, mainly 3 approaches
 - interacting = interacting non-gravitationally
 - weakly interacting
 - -> escape collider experiment undetected
 - additional (high pT) object to trigger on
 - missing transverse energy (E_T^{miss})
 from recoiling WIMPs
 - => "mono-X" searches
 - massive —> can account for relic density

Models

- ▶ LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced
 - 2 parameters: WIMP mass (\mathbf{m}_{χ}) & suppression scale (\mathbf{M}^*)
 - some comparisons to simplified models
- for Run-2: benchmark simplified models (where possible)
 - provide basis for re-interpretations (distinct kinematics)
 - collected by ATLAS/CMS DM forum (now LHC DM working group)
 - Dirac-fermionic WIMPs
 - mostly 4 parameters:
 - mediator mass (M_{Med})
 - WIMP mass (m_{χ})
 - \rightarrow 2 couplings (g_{DM},g_q), typically (1, 0.25)

 $\chi(m_{\chi})$

Models

- ▶ LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced.
 - ▶ 2 parameters: WIMP mass (m²) (M*)
 - some comparisons to simplified models
- for Run-2: benchmark simplified models (where possible)
 - provide basis for re-interpretations (distinct kinematics)
 - collected by ATLAS/CMS DM forum (now LHC DM working group)
 - Dirac-fermionic WIMPs
 - mostly 4 parameters:
 - mediator mass (M_{Med})
 - WIMP mass (m_{χ})
 - \rightarrow 2 couplings (g_{DM},g_q), typically (1, 0.25)

General Remarks

- main challenge: estimation of irreducible/dominant backgrounds
 - control regions (CR) in data
 - in most cases "global fit" to all CRs simultaneously
- sub-dominant backgrounds often taken from MC
 - typical exceptions: multi-jet and non-collision background (data-driven)
- ▶ in most cases E_T^{miss} as discriminant variable
 - search for excess in different regions of high E_Tmiss
 - if no excess: **limits** on model parameters
 - all results based on full 2015 data set,
 i.e. 3.2/fb @ √s=13 TeV
 - data taking efficiency: 93%

Ruth Pöttgen 5 June 17, 2016

Mono-Jet - Analysis (CRs)

- ► E_Tmiss > 250 GeV (trigger: 70GeV)
- Ieading jet: p_T > 250 GeV
- → ≤3 additional jets with p_T > 30 GeV
- $\Delta \varphi(E_T^{miss}, jets) > 0.4$ (suppress multijet)

dominant backgrounds:

Z(vv)+jets W(lv)+jets

$W(\mu v)$ +jets CR

- → 1 muon, 0 electrons
- ▶ m_T in [30,100] GeV

W(ev)+jets CR

→ 1 electron, 0 muons

Ζ(μμ)+jets **CR**

2 muons

Events / 50 Ge

Data / SM

→ m_{II} in [66,116] GeV

Mono-Jet - Analysis (SR)

- SRs: muon and electron veto
 - ▶ inclusive and exclusive in E_Tmiss

- largest uncertainties:
 - ▶ W/Z transfer: 2-4%
 - data statistics in CRs: up to 10%
 - theory uncertainties on top: 3%

no significant excess

- inclusive regions for model independent limits
- exclusive regions (=bins) for limits on DM model

axial-vector mediator (A)

•
$$g_q = 0.25$$
, $g_x = 1$

presentation of results as recommended by the DM WG (arxiv:1603.04156)

June 17, 2016

Mono-Photon - Analysis

- ▶ photon trigger, p_T > 120 GeV
- $E_T^{miss} > 150 \text{ GeV}, p_{T^{\gamma}} > 150 \text{ GeV}$
- ▶ \leq 1 jet with p_T > 30 GeV
- $\Delta \varphi$ (E_T^{miss}, γ or jet)>0.4

no significant excess

dominant backgrounds:

$$Z(vv)+\gamma$$
, $W(lv)+\gamma$

- Wγ/Zγ CRs: leptons selected, mass cuts
- γ jet CR: 85<E τ ^{miss}<110 GeV, $\Delta \varphi$ (E τ ^{miss}, γ)<3
- ▶ SR: muon and electron veto
- statistically limited
 - 9% stat. uncertainty from CRs (total: 11%)

Simplified Model

$$(g_q=0.25, g_{\chi}=1)$$

Effective Operator

to address question of EFT validity: truncation, i.e. remove events with $\sqrt{s} > gM^*$ for various values of g

- ▶ E_Tmiss > 250 GeV
- ≥1 large-R (=1.0) jet, p_T > 200GeV,
 boson-tagged (boson mass, substructure)
- anti-multijet selections

dominant backgrounds:

Z+jets, W+jets

- W/Z/tt CRs: leptons selected, relaxed mass cuts, (anti-)b-tagging, E_Tmiss > 200GeV
- ▶ SR: muon and electron veto
- largest uncertainty:
 - large-R jet parameter modelling: ~10%

June 17, 2016

shape fit

no significant excess

Simplified Model

Effective Operator

effective vertex: $ZZ\chi\chi$

June 17, 2016

Mono-Higgs

- ▶ new in run-2
- no ISR! (small coupling)
- widely used simplified model:
 s-channel vector mediator radiating Higgs
- other models considered in some analyses:
 - s-channel scalar mediator radiating Higgs
 - Z'-2HD simplified model
 - scalar 2HD simplified model

▶ additional parameters, e.g. gz'z'h, mixing angle...

- ▶ E_Tmiss > 150 GeV, p_Tmiss > 30 GeV
- anti-multijet selections
 - SR: lepton veto, 2 b-tagged jets

- CRs: orthogonal cuts on N_{b-jet} & N_{lep}
- fit to shape of (di)jet mass

- largest uncertainties:
 - b-tagging
 - background normalisation (theo.)
 - total: few %

Mono- $h(\gamma\gamma)$

- diphoton trigger
- ▶ \geq 2 photons with m_{yy} in [105, 160] GeV
- 4 event categories
 - cuts on E_T^{miss}, p_T^{γγ}, p_T sum of γ's & jets
- largest uncertainties:
 - γγ-vertex selection, E_Tmiss
- simultaneous fit to all regions

 $E_T^{miss} > 100 \text{ GeV}$, $p_T^{\gamma\gamma} > 100 \text{ GeV}$

June 17, 2016

- various lepton triggers
- form lepton quadruplets
- m₄₁ in [110, 140] GeV

ATLAS Preliminary

110 < m₄₁ < 140 GeV

CR SR

 $10^{5} \mod m_{\chi} = 1 \text{ GeV}$

 10^2

 10^{-1}

10⁻²

10⁻³

 10^{-4} 10⁻⁵

10⁴ 13 TeV, 3.2 fb⁻¹

Ruth Pöttgen

Vector: 200 GeV

Scalar: 300 GeV

Z+jets

ZHhh

ZHIIvv

250

Summary

- already large suite of mono-X searches @13TeV at ATLAS
 - from "work horse" monojet to new mono-H searches
- transition EFT —> simplified models where possible
- no significant excess —> exclusion bounds on various models
- more data is coming!

Additional Material

Simplified Model ($g_q=0.25$, $g_x=1$)

DM+Heavy Flavour

- ▶ 20.3/fb @ 8 TeV
- increased sensitivity to effective operators that contain quark mass
- in addition: b-flavoured DM model (b-FDM),
 preferred by FERMI gamma-ray excess

4 signal regions
 defined by various variables:
 E_T^{miss} > 200-300 GeV,
 many or high-p_T (b-)jets,
 small lepton multiplicity...

no significant excess

June 17, 2016

Effective Operator (example)

much stronger bounds on scalar models than e.g. mono-jet

