

Heavy Ions at HIL-LHC

Thanks to: J. Jowett (LHC), J. Jia & A. Trzupek (ATLAS), A. Dainese (ALICE), M. Nguyen & Y-J. Lee (CMS), G. Manca & L. Massacrier (LHCb)

Outline

- **LHC Luminosity evolution and Heavy-Ion running timeline**
- Heavy ion physics program at HL-LHC
- **Experiment upgrades and strategies**
- **A** selection of performance studies

Heavy-Ion Physics: Why at the LHC?

The high-energy frontier: large and long-living QGP, large cross-sections for hard probes. Vanishing net baryon density: Early Universe conditions

The low-energy frontier: focus on bulk observables. Energy scan: search of the critical point and characterization of the phase transition

LHC/HL-LHC Plan [https://hilumilhc.web.cern.ch/about/hl-lhc-project]

Main upgrades relevant for the Heavy-Ion physics (LS2: 2019-2020)

- ► LHC collimator upgrades: target L \approx 6×10²⁷ cm⁻² s⁻¹ for Pb-Pb (i.e. 50 kHz int. rate)
- Major ALICE and LHCb upgrades, important upgrades for ATLAS and CMS
- Focus on rare probes, their coupling with QGP medium and (medium-modified) hadronization

4/16

Antonio Uras

Heavy Ions at HL-LHC

Heavy-Ion Running Conditions at the LHC

Heavy-lons in LHC Run 2 (2015): [J.M. Jowett, M. Schaumann – IPAC2016, Busan, Korea]

- Pb-Pb collisions at 5.02 TeV per nucleon pair (c.m. energy of the 2013 p-Pb run)
- > 18 days of operation for physics, design luminosity surpassed by a factor of 3.6
- \triangleright Integrated luminosity of up to 0.7 nb⁻¹ per experiment
- Specific bunch patterns providing Pb-Pb collisions in LHCb, for the first time

Heavy-Ions in LHC Runs 3+4 (2021 \rightarrow):

- Experiments request for Pb-Pb: $L_{int} > 10 \text{ nb}^{-1}$ (ALICE LoI: 10 nb⁻¹ with nominal solenoidal field + 3 nb⁻¹ with reduced solenoidal field)
 - → ×100 larger min. bias sample for ALICE w.r.t. Run 2
 - → ×10 larger rare trigger sample for ATLAS/CMS w.r.t. Run 2
- pp reference, p-A. Investigating feasibility for lighter nuclei collisions

5/16

Heavy-Ion Physics at the HL-HI-LHC (I)

- ❖ Jets: characterization of the energy loss mechanism, both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - \triangleright Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T (main focus of ATLAS and CMS)
 - > Flavor-dependent in-medium fragmentation functions (main focus of ALICE)
- Heavy flavors: mass dependence of energy loss, study of in-medium thermalization and hadronization as a probe of the medium transport properties
 - ightharpoonup Low-p_T production and elliptic flow of several HF hadron species, with first measurements of beauty at forward rapidity down to zero p_T (main focus of ALICE)
 - B hadrons and b-jets (main focus of ATLAS and CMS)
 - > LHCb: performance under investigation

Heavy-Ion Physics at the HL-HI-LHC (II)

- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - \triangleright Low-p_T charmonium production and its elliptic flow (main focus of ALICE)
 - Multi-differential studies of Y states (main focus of ATLAS and CMS)
 - > LHCb: performance under investigation
- **Prompt dilepton production: (i) thermal radiation** to map temperature during system evolution; **(ii) modification of \rho meson spectral function** as a probe of the chiral symmetry restoration; **(iii) analysis of the continuum** to study low-mass Drell-Yan production and put limits on low-mass dark γ'/Z' boson production
 - \triangleright Improved background rejection for prompt dielectrons and dimuons down to low-p_T (ALICE)

ALICE Upgrade Strategy (I)

Detector specificities (strengthened with the upgrades):

- > Hadron and lepton identification
- Light-weight and precise trackers
- Low magnetic field

Talk by P. Antonioli
Saturday 8:30

Main observables...

- ▶ Low-p_T Heavy Flavors
- ▶ Low-p_T Charmonium
- ▶ Prompt dileptons down to low-mass and low-p_T

ALICE Upgrade LOI + addendum: CERN-LHCC-2012-012, CERN-LHCC-2013-014

ALICE TPC Upgrade TDR: CERN-LHCC-2013-020 ALICE ITS Upgrade TDR: CERN-LHCC-2013-024

ALICE MFT TDR: CERN-LHCC-2015-001

ALICE Online-Offline Upgrade TDR: CERN-LHCC-2015-006

... are based on "untriggerable" signals!

- Record all events at up to 50 kHz in Pb-Pb (currently 0.5 kHz): strong data reduction needed (from 1 TB/s to 50 GB/s via online reconstruction)
- HL-HI-LHC: increase of minimum-bias sample ×100 w.r.t. Run 2

ALICE Upgrade Strategy (II)

New Inner Tracking System (ITS)

New pixel technology: improved granularity and resolution, reduced material budget

New Forward Muon Tracker (MFT)

Vertex tracker for the forward muon spectrometer: heavy flavor vertices, prompt/displaced muon discrimination

TPC Upgrade:

Replacement of the MWPC-based readout by detectors employing GEMs to allow TPC operation in continuous mode

Upgraded read-out for many detectors, new integrated Online-Offline (O²), new Fast Interaction Trigger detector

Upgraded ALICE records Pb-Pb data at 50 kHz (< 0.5 kHz in Run I)</p>

CMS/ATLAS Upgrades Relevant for Heavy-Ions

CMS detector

- \triangleright Lighter silicon tracker with extended coverage out to $\eta = 4$
- GEM muon stations matching the η coverage of the tracker
- New high granularity calorimeter endcaps that together with the tracker will enable particle-flow reconstruction at large rapidity

ATLAS detector

- Complete replacement of the internal tracker
- Level-I track trigger
- Calorimeter electronics upgrades
- Upgraded muon trigger system

Main focus on triggerable signals (complementary strategy w.r.t. ALICE):

muon, jet, displaced track triggers

- ♦ Trigger/DAQ approach: strong event recording reduction from 50 to 0.1 kHz
- → HL-LHC: increase of sample ×10 w.r.t. Run 2

LHCb as a Heavy-Ion Detector

- Very successful participation to the 2013 p-Pb run. First Pb-Pb run in 2015!
 - Detector performance and potential in heavy-ion (collider mode) will be clear after the analysis of the 2015 data

- Exploration of LHCb unique features: forward acceptance, vertexing, PID, calorimetry
 - \triangleright Cold nuclear matter effects on prompt/non-prompt quarkonia and open HF down to zero p_T
 - First observation of Z production in p-Pb
- SMOG system: LHCb data taking in fixed-target mode (currently unique at the LHC)
 - ightharpoonup Various gases can be injected. $\sqrt{s_{\mathrm{NN}}}$ up to ~100 GeV
 - To be continued after LS2 with possibly more noble gas species
- Upgrades (LS2) most relevant to Heavy-Ions:
 - New trackers (pixel, strip, scintillating fiber)
 - Readout upgrade: exploiting full delivered p-Pb luminosity

Jet Quenching in ATLAS and CMS

- High precision γ-jet, Z-jet correlations (E^{γ/Z} = E^{jet} before medium effects), di-jets, with dedicated b-jet triggering
 - ightharpoonup 10M di-jets with p_{T.1} > 120 GeV/c (CMS, 10 nb⁻¹)
 - > 140k b-jets with $p_T > 120 \text{ GeV/c}$ (CMS, 10 nb⁻¹)
- ❖ Understand medium response and energy radiation details, map path-length dependence (radiative ~L², collisional ~L)

Low-p_T Heavy-Flavors in ALICE

- Yield and elliptic flow in Heavy-Ion collisions accessible at mid- and forward-rapidity for both charm and beauty sectors:
- Central barrel: prompt charm mesons/baryons;
 D mesons and J/ψ from B + full B reconstruction
- Muon arm: single muons from D; J/ψ from B + single muons from B

♣ Baryon/meson ratio: only available at mid-rapidity thanks to the upgraded ITS (upgrade especially needed for $Λ_c \rightarrow pKπ$ with cτ ≈ 60 μm)

Charmonium and Low-mass Dileptons in ALICE

Improved discrimination of prompt/displaced dileptons thanks to the upgraded ITS (central dielectrons) and MFT (forward dimuons)

- Isolation of forward prompt J/ψ (not possible without the MFT)
- S/B improvement for ψ(2S) in central Pb-Pb (dimuon channel) by a factor 6-7

- Isolation of medium-modified ρ; thermal radiation from QGP
- Excellent performance in the dielectron channel with a dedicated low magnetic field (low-p_T acceptance)

Light BSM Bosons from QGP: a Case for HL-LHC?

Light scalar or vector BSM bosons could be observed in high-energy (with large QGP volumes produced), high-luminosity nuclear collisions

- J. Ellis & P. Salati, Nuclear Physics B342 (1990)
- J. Davis & C. Böhm, arXiv:1306.3653
- Resonance in the thermal dilepton production from the QGP for masses up to 3 GeV/c²: dilepton measurements in ALICE could set limits on quark- and lepton-couplings of light BSM bosons
- * Heavier bosons would mainly decay into multiparticle states involving cc and ττ pairs, and are no longer detectable in the ee or μμ channels
- ♣ ALICE: feasibility studies on dark photons of mass < 100 MeV/c² http://www.ge.infn.it/~ldma2015/presentations/wednesday-morning/05_gunji.pdf</p>

Conclusions

- * "HL-HI-LHC" (Heavy-Ions in LHC Runs 3+4): fully exploit the potential of the machine as a high-luminosity HI collider
 - ightharpoonup Pb-Pb > 10nb⁻¹ : rare triggers ×10 w.r.t. Run 2 (CMS, ATLAS), ×100 for minimum bias (ALICE)
 - pp reference at Pb-Pb energy; p-Pb; possibly light ions
- Rich physics program being prepared by the experiments
 - Upgraded detectors and data acquisition systems to cope with the high interaction rate
 - ➤ ALICE: focus on untriggerable probes by recording all events after online data volume reduction
 - > CMS/ATLAS: focus on triggerable probes with L1 and High-Level Triggers to reduce the rate of recorded events
 - ➤ LHCb: potential for the HL-HI-LHC will be clear once the results of the 2015 Pb-Pb run are available

16/16

Antonio Uras

Heavy Ions at HL-LHC

Backup Slides

ALICE Muon Physics: Current Items

- **Low-mass dimuons.** Non-perturbative aspects of QCD through Dalitz and 2-body decays of light narrow resonances close to freeze-out. (Hidden) strangeness production. Thermal emission mediated by the broad vector meson ρ in the form $\pi^+\pi^- \to \rho \to \mu^+\mu^-$
- Quarkonium states. Dissociation/recombination in the QGP phase (and in smaller systems?). Thermal charm production at low p_T. Test of perturbative QCD hadro-production mechanisms in pp collisions. Photo-production in ultra-peripheral heavy-ion "collisions"
- ➤ Heavy-flavor single muons. Energy loss and coupling of charm and beauty quarks with the deconfined medium
- ➤ Single muons and dimuons from W/Z bosons. Standard candle reference for inmedium effects. Probes of nucleons and nuclei parton structure

ALICE Upgrade Strategy

- ➤ ALICE will run at 50 kHz in Pb-Pb (i.e. $L = 6 \times 10^{27}$ cm⁻¹ s⁻¹) with minimum bias (pipeline) readout (max readout with present ALICE set-up: ≈ 0.5 kHz)
 - ❖ Gain a factor of 100 in statistics over current program: ×10 from the integrated luminosity (1 nb⁻¹ → 10 nb⁻¹) and ×10 from the pipelined readout allowing inspection of all collisions. Inspect $o(10^{10})$ central collisions instead of $o(10^{8})$
- \triangleright Improve vertexing and tracking at low p_T : better spatial resolution is needed on track reconstruction to improve secondary vertex reconstruction
- This entails a major upgrade of the whole apparatus:
 - New, smaller radius beam pipe
 - New inner tracking system: upgraded ITS + MFT
 - High-rate upgrade for the readout of the TPC, TRD, TOF, CALS, DAQ/HLT, Muons and Trigger detectors

ALICE Upgrade Strategy

LHC roadmap: ion runs

 $Run2: \mathcal{L}_{integrated}^{Pb-Pb} = 1.0 \ nb^{-1}$

Antonio Uras

Run3: $\mathcal{L}_{integrated}^{Pb-Pb} = 6.0 \ nb^{-1}$

 $Run4: \mathcal{L}_{integrated}^{Pb-Pb} = 7.0 \ nb^{-1}$

Shutdown/Technical stop
Proton physics
Commissioning
Ions

MFT Upgrade Physics Program

As a vertex tracker for the Muon Spectrometer, the MFT will have a major impact on several items of the ALICE muon physics

Open heavy flavors

- **theorem 2** Charm measurement down to $p_T = 1 \text{ GeV/c}$ in the single muon channel
- Reauty measurement down to $p_T = 0$ in the non-prompt J/ψ channel

Prompt Charmonium production

- Prompt/non-prompt J/ ψ separation down to $p_T = 0$
- ϕ ψ(2S) measurement in central Pb-Pb collisions, down to $p_T = 0$

Low-mass dimuons

- Improved mass resolution for resonances
- Sensitivity to prompt continuum

And also:

- Event plane measurement and azimuthal correlations at forward rapidity
- ❖ Isolation of any prompt signal involving $p_T > 1$ GeV/c (Drell-Yan, limits on light BSM bosons?)

Charm Measurement with Single Muons

Systematic sources considered:

- Residual MFT-ITS misalignment
- \triangleright MC assumption for the p_T distributions of HF muons
- Systematics on the description of the MFT response

> Charm yield accessible starting from $p_T(\mu) = 1 \text{ GeV/c}$ (at least)

Important baseline for charmonium measurements

Beauty Measurement with non-prompt J/ψ

ightharpoonup Prompt/displaced J/ ψ discriminating variable: longitudinal projection of the primary-secondary vertex distance considered for the analysis

$$t_z = \frac{\left(z_{J/\psi} - z_{\text{vtx}}\right) \cdot M_{J/\psi}}{p_z}$$

- Analysis Strategy: double (possibly simultaneous) fit on the dimuon invariant mass spectrum and the t_z distribution of the dimuons falling within the chosen J/ψ mass window
 - **The fit on the invariant mass spectrum** fixes the normalization of the background and the inclusive J/ψ signal. **The fit on the t_z distribution** then separates the two J/ψ contributions

Non-prompt J/ ψ : t_7 Template Fits

- Weak p_T dependence of the t_z templates: prompt/non-prompt J/ ψ effective down to zero p_T
- ➤ Background template: cross-check possible between mixed event technique and data-driven side-band method. Normalization fixed by the fit on the invariant mass spectrum

Beauty Measurement with non-prompt J/ψ

- **Displaced/prompt separation** possible down to zero $p_T(J/ψ)$ within 5% stat + syst uncertainties
- **Beauty R_{AA} measurement** possible down to zero $p_T(J/\psi)$ within 7% stat + syst uncertainties even in central Pb-Pb

Prompt Charmonia: J/ψ and ψ'

- Precision measurement for J/ψ at forward rapidity already in LHC Run 2, but:
 - No insight on ψ' physics in central Pb-Pb
 - Only inclusive measurement available at forward rapidity

PCA: Point of Closest Approach between two muon tracks

PCA Quality: Estimates the probability that both muons are coming from the PCA

Powerful tool to improve the S/B when the tracks have $p_T > 1$ GeV/c

$$f_i(\vec{v}) = \exp\left[-0.5(\vec{v} - \vec{r_i})^T V_i^{-1}(\vec{v} - \vec{r_i})\right]$$

where $\vec{r_i}$ is the point of closest approach of track i to the point \vec{v} . V_i is the covariance matrix of the track i at $\vec{r_i}$

Probability that the two tracks come from the same vertex \vec{v}

$$P(\vec{v}) = \frac{2f_1(\vec{v})f_2(\vec{v})}{f_1(\vec{v}) + f_2(\vec{v})}$$

Low Mass & Continuum Dileptons

- Low and intermediate mass dileptons both in the dielectron (mid rapidity) and dimuon (forward rapidity) channels
- Isolation of prompt sources needs precise measurement of dilepton offset
- In addition, MFT will improve the mass resolution for light resonances in dimuons

Low Mass & Continuum Dileptons

- **Precise measurement of dilepton offset** to remove charm and π/K continuum
- ❖ **Dielectron channel advantaged** thanks to the excellent offset resolution of the upgraded ITS, but dedicated low magnetic field needed for low p_T acceptance
- Charm rejection strategy for the MFT must e optimized for the intermediate masses

Other Items & Outlook

Reaction Plane Measurement

Excellent reaction plane resolution, thanks to the high-granularity and the possibility to perform a standalone tracking (excluding contaminations from noisy clusters)

Low-Mass Drell-Yan Measurement

Low-mass (< 10 GeV/c²) Drell-Yan lepton-pair production at forward rapidity: important source of information on the partonic structure of protons

- Constraints on the gluon distribution and its nuclear dependence through the transverse momentum distributions
- Information about the onset of (gluon) saturation at small-x

Drell-Yan: main source of prompt dimuons between J/ ψ and Υ at the LHC

- Easily identifiable with a mass-offset combined fit on MFT-matched dimuons
- \triangleright Due to the relatively large mass, a strong single-μ p_T cut (p_T > 2 GeV/c) can be imposed to improve the quality of the sample

Beyond Standard Model Searches?

- A low-mass dark γ' or Z' will generate a resonant enhancement of the dilepton spectrum produced thermally by the QGP, at an energy corresponding to the dark gauge boson mass.
- ❖ Analysis recently proposed by D. Pagano on the Run2 data: feasibility studies will start in the next weeks. First attempt in arXiv:1306.3653 on the PHENIX data. ALICE already studies limits on light dark photon production below 100 MeV/c²

* With the MFT: rejection of non-prompt background (single-μ cut at 1.5 GeV/c should be affordable) and better mass resolution