Flavor at the HL-LHC

Giovanni Punzi

UNIPI & INFN-Pisa

on behalf of ATLAS, CMS, LHCb

LHCP 2016 Lund, 12-18 June 2016

LHC start has been so f avour-ful...

LHC start has been so f avour-ful...

Not just 'stamp collecting': Flavor probes fundamental processes

1) TGC coupling on 2 of 3 parameters competitive with Hi-Pt [Bobeth & Haisch, JHEP 1509 (2015) 018]

Just a couple of examples...

2) $B \rightarrow \mu\mu$ now better then EWK precision tests on Zbb coupling [Guadagnoli & Isidori, PLB 724:63 (2013) "BR(Bs $\rightarrow \mu\mu$) as an EWK precision test"]

Sensitivity of f avor to NP scales (assuming CKM structure/MFV)

Sensitivity of f avor to NP scales (under generic assumptions)

Flavor @ HL-LHC

Huge HF cross sections at 13 TeV:

5* 10¹¹ bb + 2.8 * 10¹² cc in 1 fb-1
2.5* 10¹³ bb + 1.4 * 10¹⁴ cc in 50 fb-1
10¹⁵ bb + 10¹⁶ cc in 3000 fb-1

Nominal sensitivities

Bd/Bs \rightarrow μμ down to th. u. (~5%) Rare: D⁰ \rightarrow μμ: [10⁻¹¹÷10⁻¹²], K_S \rightarrow μμ[<10⁻¹⁰], τ \rightarrow μμμ [10⁻¹¹]

<u>CKM</u>: $\sigma(\text{angles}) \sim 0.1 \text{ deg.}$ <u>Charm</u>: $x,y \sim 10^{-5}$, $|q/p| \sim 10^{-5}$

[INFN WN White Paper]

- Actual performance depends on detector capabilities Selectivity and DAQ
- LHCb oriented to higher rates → upgrades sooner than ATLAS and CMS (LHCb recently started considering a further upgrade for Run-5)

	LHC era			HL-LHC era		
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)	
ATLAS, CMS	25 fb	100 fb	300 fb	\rightarrow	3000 fb	
LHCb	3 fb	8 fb	23 fb	46 fb	(300 fb)	
		Today LHCb	upgrade	(LHCb :	2 nd phase)	
		ATLAS,CMS upgrade			е	

ATLAS B-related upgrades

→ better acceptance, less background

Move track trigger (FTK) to Level 1

→ better selectivity

ATLAS impact on Bs mixing

Plans for further dimuon-based physics

CMS B-related upgrades

Overall better performance for b-rhysics

Upgrade Silicon pixel detector with a layer closer to beam

→ better vertex resolution

New L1 track trigger → muon rate improved 10x at 20GeV

CMS Outlook for B µµ

Bd→µµ/Bs→µµ already had high impact in limiting possible NP

Currently probes NP scales 0.5-1 TeV (as Higgs coupling) (Tree level probed at (0(100TeV))

\mathcal{L} (fb^{-1})	$N(\mathrm{B}_s^0)$	$N(B^0)$	$\delta \mathcal{B}(\mathrm{B}^0_s o \mu^+\mu^-)$	$\delta \mathcal{B}(\mathrm{B}^0 o \mu^+\mu^-)$	B ⁰ sign.	$\delta rac{\mathcal{B}(\mathrm{B}^0 ightarrow \mu^+ \mu^-)}{\mathcal{B}(\mathrm{B}^0_s ightarrow \mu^+ \mu^-)}$
20	18.2	2.2	35%	> 100%	$0.0 - 1.5 \sigma$	> 100%
100	159	19	14%	63%	$0.6 - 2.5 \sigma$	66%
300	478	57	12%	41%	$1.5 - 3.5 \sigma$	43%
300 (barrel)	346	42	13%	48%	$1.2 - 3.3 \sigma$	50%
3000 (barrel)	2250	271	11%	18%	$5.6 - 8.0 \sigma$	21%

The LHCb upgrade: detector

- Substantial upgrades to most detectors [see A. Cardini talk]
- Higher granularity + faster electronics to handle higher L

LHCb is an experiment at the "Gev" scale ... that is, Giga-events, not electronVolts.

this imposes unique requirements on the DAQ

The LHCb DAQ upgrade

- Detector readout and trigger at 40 MHz + higher rate to storage will be the drivers to handle 5x luminosity and collect larger samples
- Real-time data calibration and reconstruction [see L. Grillo talk]
- Based on new front-end electronics, large PC-based event-builder network, and large expansion of online CPU farm

LHCb NP impact via B-mixing

- LHCb with 50 fb⁻¹ still dominates in HL era: $\sigma(\phi_s)$ = 0.045 \rightarrow 0.009 (observe SM at 3 σ !) $\sigma(\beta)$ = 0.2 deg (Belle II)
- Sensitivity to NP at 2 TeV (10³ TeV) level, independent of phase
 - → gluino sensitivity in the same ballpark of direct searches

Precision CKM @ LHC

- LHCb currently contributes the best determination of angle γ
 - σ(γ) from 4 deg in Run-2, down to 1 deg with 50 fb⁻¹
- Important comparison to loop-level <u>O(20%) NP still allowed</u>
- No theory limitations important item to keep improving with HL

Given enough data, hadronic experiments can do tau modes as well...

$$R(D^*) = \mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu)$$

- LHCb now sees similar anomaly as Belle/Babar [PRL 115, 111803 (2015)]
- LHCb will produce a lot more useful info on this issue in future
- Will also study other tau modes (and in hadronic final states as well)

Other existing deviations: B K*µµ

- Existing deviations will of course be investigated with more data
- More data means more than just increasing the significance of deviation: exploring further variables (e.g. A_{CP} → access imaginary parts) and further channels will likely shed more light on the issue (e.g. b → s modes [R. Barbieri et al., EPJC 76:67 (2016)])
- NP or SM? Either way, we are going to learn more Physics.

Charm mixing/CPV

- LHCb the first single experiment to observe D⁰ mixing [PRL 110 (2013) 10180]
- CPV not yet observed. Interesting parameter related to top FCNC, not theory limited.
- Unique probe of up-quark sector
- Huge promise from HL-LHC

Analysis	Obs.	LHCb (3 fb ⁻¹)	LHCb (50 fb ⁻¹)
$K_S^0 \pi^+ \pi^-$	x	2×10^{-3}	4×10^{-4}
	y	2×10^{-3}	4×10^{-4}
	q/p	0.2	0.04
	φ	15°	3°
K^+K^- ,	y_{CP}	3×10^{-4}	2×10^{-5}
$\pi^+\pi^-$	A_{Γ}	3×10^{-4}	2×10^{-5}
$K^+\pi^-$	x'^2	5×10^{-5}	1×10^{-5}
	y'	1×10^{-3}	2×10^{-4}
	q/p	0.25	0.05
	A_D	0.02	4×10^{-3}
	φ	-	-

A very rich program...

[LHCb-PUB-2014-40]

					<u>-0 1 1 101</u>
Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_{\rm S}^0) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{ ext{eff}}(B_s^0 o \phi \gamma)/ au_{B_s^0}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV}^2/c^4)$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$	3.4	2.2	0.4	_
<i>CP</i> violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	_

...and still room for improvement!

[LHCb-PUB-2014-40]

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade Theory
B_s^0 mixing	$\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	$0.009 \sim 0.003$
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012 $\times 3$ ~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5 0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018 0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023 < 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_{\text{S}}^0) \text{ (rad)}$	0.30	0.20	0.036 0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025 < 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5%	3.2%	0.6% 0.2 %
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007 0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9% More $\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/}c^4)$	0.09	0.05	0.017 obs ~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4% ~ $10%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19 0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	220%	110%	40% x8 $\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9° negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0° large negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31° negligible
Charm	$A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$	3.4	2.2	$0.4 \atop 0.1$ large
<i>CP</i> violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1 large –

LHCb Upgrade Consolidation (Phase-1B)

LHCb Phase-Ib upgrade during **LS3** aims for **moderate cost** improvements on the Phase-I detector. Possible improvements being investigated which have the potential to extend LHCb physics capabilities:

- Improve tracking acceptance for low momentum particles by installing tracking stations on the dipole magnet internal side.
- Improve muon acceptance by adding muon chambers around the dipole magnet using the magnet yoke as shielding.
- Replace HCAL with a new shielding for the muon chambers.
- Innermost ECAL region needs to be replaced during LS3. Rather than using existing spares, use new technologies (see later).
- TORCH: as standalone PID detector, or as a timing device, perhaps embedded in ECAL.
- SciFi may need some module replacement during LS3.

• •••

Possibility of LHCb Luminosity increase

Levelled luminosity LHCb [10 ³⁴ cm ⁻² s ⁻¹]	Opt fill length (IPI/5) [h]	Integrated luminosity ATLAS/ CMS [fb ⁻¹ /y]	Integrated luminosity LHCb [fb ⁻¹ /y]	β* IP8 [m]	Levelling time IP8 [h]
0.2 (nom.)	9.3	261	10.4	3	9
1	9.1	258	28	3	0.5
1	9	257	37	2	3
1	8.8	256	47	1	6
2	9.1	258	28	3	0
2	8.9	257	41	2	0
2	8.5	253	70	1	2
				G.Ardu	iini, Preliminary

- Thanks to excellent efforts from the LHC team, the possibility of delivering up to 2*10^34 to IP8 (LHCb) has been studied.
 This would require some extra absorbers to protect machine elements.
- Preliminary results allow for up to 300 fb-1 to be collected by LHCb
 a 6x enhancement without perturbation to ATLAS/CMS.
- Calls for substantially upgraded detector, but unlocks great possibilities

LHCb upgrades being considered for future running at 2*10³⁴

- VELO: double inner radius to survive radiation or (better) replace with thinner sensor, smaller pixels
- Supplement downstream SciFi tracking with Silicon (granularity)
- Restructure PID (muon and RICH detectors)
- Upgraded calorimetry, possibly with TOF capabilities (TORCH)
- Timing of track hits to 200 ps to keep PV assignment mismatch at current levels

[→ see "Beyond the LHCb Phase-1 Upgrade" workshop, 6/4/2016]

To summarize ...

...also for Flavor!