Flavor at the HL-LHC #### Giovanni Punzi **UNIPI & INFN-Pisa** on behalf of ATLAS, CMS, LHCb **LHCP 2016** Lund, 12-18 June 2016 ### LHC start has been so f avour-ful... ### LHC start has been so f avour-ful... ## Not just 'stamp collecting': Flavor probes fundamental processes 1) TGC coupling on 2 of 3 parameters competitive with Hi-Pt [Bobeth & Haisch, JHEP 1509 (2015) 018] Just a couple of examples... 2) $B \rightarrow \mu\mu$ now better then EWK precision tests on Zbb coupling [Guadagnoli & Isidori, PLB 724:63 (2013) "BR(Bs $\rightarrow \mu\mu$) as an EWK precision test"] # Sensitivity of f avor to NP scales (assuming CKM structure/MFV) # Sensitivity of f avor to NP scales (under generic assumptions) ### Flavor @ HL-LHC #### Huge HF cross sections at 13 TeV: 5* 10¹¹ bb + 2.8 * 10¹² cc in 1 fb-1 2.5* 10¹³ bb + 1.4 * 10¹⁴ cc in 50 fb-1 10¹⁵ bb + 10¹⁶ cc in 3000 fb-1 Nominal sensitivities Bd/Bs \rightarrow μμ down to th. u. (~5%) Rare: D⁰ \rightarrow μμ: [10⁻¹¹÷10⁻¹²], K_S \rightarrow μμ[<10⁻¹⁰], τ \rightarrow μμμ [10⁻¹¹] <u>CKM</u>: $\sigma(\text{angles}) \sim 0.1 \text{ deg.}$ <u>Charm</u>: $x,y \sim 10^{-5}$, $|q/p| \sim 10^{-5}$ [INFN WN White Paper] - Actual performance depends on detector capabilities Selectivity and DAQ - LHCb oriented to higher rates → upgrades sooner than ATLAS and CMS (LHCb recently started considering a further upgrade for Run-5) | | LHC era | | | HL-LHC era | | | |------------|--------------------|--------------------|--------------------|--------------------|------------------------|--| | | Run 1
(2010-12) | Run 2
(2015-18) | Run 3
(2020-22) | Run 4
(2025-28) | Run 5+
(2030+) | | | ATLAS, CMS | 25 fb | 100 fb | 300 fb | \rightarrow | 3000 fb | | | LHCb | 3 fb | 8 fb | 23 fb | 46 fb | (300 fb) | | | | | Today
LHCb | upgrade | (LHCb : | 2 nd phase) | | | | | ATLAS,CMS upgrade | | | е | | ### ATLAS B-related upgrades → better acceptance, less background Move track trigger (FTK) to Level 1 → better selectivity ### ATLAS impact on Bs mixing Plans for further dimuon-based physics ### CMS B-related upgrades Overall better performance for b-rhysics Upgrade Silicon pixel detector with a layer closer to beam → better vertex resolution New L1 track trigger → muon rate improved 10x at 20GeV ### CMS Outlook for B µµ Bd→µµ/Bs→µµ already had high impact in limiting possible NP Currently probes NP scales 0.5-1 TeV (as Higgs coupling) (Tree level probed at (0(100TeV)) | \mathcal{L} (fb^{-1}) | $N(\mathrm{B}_s^0)$ | $N(B^0)$ | $\delta \mathcal{B}(\mathrm{B}^0_s o \mu^+\mu^-)$ | $\delta \mathcal{B}(\mathrm{B}^0 o \mu^+\mu^-)$ | B ⁰ sign. | $\delta rac{\mathcal{B}(\mathrm{B}^0 ightarrow \mu^+ \mu^-)}{\mathcal{B}(\mathrm{B}^0_s ightarrow \mu^+ \mu^-)}$ | |--------------------------------------|---------------------|----------|--|--|----------------------|---| | 20 | 18.2 | 2.2 | 35% | > 100% | $0.0 - 1.5 \sigma$ | > 100% | | 100 | 159 | 19 | 14% | 63% | $0.6 - 2.5 \sigma$ | 66% | | 300 | 478 | 57 | 12% | 41% | $1.5 - 3.5 \sigma$ | 43% | | 300 (barrel) | 346 | 42 | 13% | 48% | $1.2 - 3.3 \sigma$ | 50% | | 3000 (barrel) | 2250 | 271 | 11% | 18% | $5.6 - 8.0 \sigma$ | 21% | ### The LHCb upgrade: detector - Substantial upgrades to most detectors [see A. Cardini talk] - Higher granularity + faster electronics to handle higher L ### LHCb is an experiment at the "Gev" scale ... that is, Giga-events, not electronVolts. this imposes unique requirements on the DAQ ### The LHCb DAQ upgrade - Detector readout and trigger at 40 MHz + higher rate to storage will be the drivers to handle 5x luminosity and collect larger samples - Real-time data calibration and reconstruction [see L. Grillo talk] - Based on new front-end electronics, large PC-based event-builder network, and large expansion of online CPU farm ### LHCb NP impact via B-mixing - LHCb with 50 fb⁻¹ still dominates in HL era: $\sigma(\phi_s)$ = 0.045 \rightarrow 0.009 (observe SM at 3 σ !) $\sigma(\beta)$ = 0.2 deg (Belle II) - Sensitivity to NP at 2 TeV (10³ TeV) level, independent of phase - → gluino sensitivity in the same ballpark of direct searches ### Precision CKM @ LHC - LHCb currently contributes the best determination of angle γ - σ(γ) from 4 deg in Run-2, down to 1 deg with 50 fb⁻¹ - Important comparison to loop-level <u>O(20%) NP still allowed</u> - No theory limitations important item to keep improving with HL ### Given enough data, hadronic experiments can do tau modes as well... $$R(D^*) = \mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu)$$ - LHCb now sees similar anomaly as Belle/Babar [PRL 115, 111803 (2015)] - LHCb will produce a lot more useful info on this issue in future - Will also study other tau modes (and in hadronic final states as well) ### Other existing deviations: B K*µµ - Existing deviations will of course be investigated with more data - More data means more than just increasing the significance of deviation: exploring further variables (e.g. A_{CP} → access imaginary parts) and further channels will likely shed more light on the issue (e.g. b → s modes [R. Barbieri et al., EPJC 76:67 (2016)]) - NP or SM? Either way, we are going to learn more Physics. ### Charm mixing/CPV - LHCb the first single experiment to observe D⁰ mixing [PRL 110 (2013) 10180] - CPV not yet observed. Interesting parameter related to top FCNC, not theory limited. - Unique probe of up-quark sector - Huge promise from HL-LHC | Analysis | Obs. | LHCb (3 fb ⁻¹) | LHCb (50 fb ⁻¹) | |---------------------|--------------|----------------------------|-----------------------------| | $K_S^0 \pi^+ \pi^-$ | x | 2×10^{-3} | 4×10^{-4} | | | y | 2×10^{-3} | 4×10^{-4} | | | q/p | 0.2 | 0.04 | | | φ | 15° | 3° | | K^+K^- , | y_{CP} | 3×10^{-4} | 2×10^{-5} | | $\pi^+\pi^-$ | A_{Γ} | 3×10^{-4} | 2×10^{-5} | | $K^+\pi^-$ | x'^2 | 5×10^{-5} | 1×10^{-5} | | | y' | 1×10^{-3} | 2×10^{-4} | | | q/p | 0.25 | 0.05 | | | A_D | 0.02 | 4×10^{-3} | | | φ | - | - | ### A very rich program... [LHCb-PUB-2014-40] | | | | | | <u>-0 1 1 101</u> | |---------------------|---|---------------|---------------|----------------|-------------------| | Type | Observable | LHC Run 1 | LHCb 2018 | LHCb upgrade | Theory | | B_s^0 mixing | $\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$ | 0.049 | 0.025 | 0.009 | ~ 0.003 | | | $\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$ | 0.068 | 0.035 | 0.012 | ~ 0.01 | | | $A_{\rm sl}(B_s^0) \ (10^{-3})$ | 2.8 | 1.4 | 0.5 | 0.03 | | Gluonic | $\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$ | 0.15 | 0.10 | 0.018 | 0.02 | | penguin | $\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$ | 0.19 | 0.13 | 0.023 | < 0.02 | | | $2\beta^{\text{eff}}(B^0 \to \phi K_{\rm S}^0) \text{ (rad)}$ | 0.30 | 0.20 | 0.036 | 0.02 | | Right-handed | $\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$ | 0.20 | 0.13 | 0.025 | < 0.01 | | currents | $ au^{ ext{eff}}(B_s^0 o \phi \gamma)/ au_{B_s^0}$ | 5% | 3.2% | 0.6% | 0.2% | | Electroweak | $S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$ | 0.04 | 0.020 | 0.007 | 0.02 | | penguin | $q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$ | 10% | 5% | 1.9% | $\sim 7\%$ | | | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV}^2/c^4)$ | 0.09 | 0.05 | 0.017 | ~ 0.02 | | | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 14% | 7% | 2.4% | $\sim 10\%$ | | Higgs | $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$ | 1.0 | 0.5 | 0.19 | 0.3 | | penguin | $\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ | 220% | 110% | 40% | $\sim 5\%$ | | Unitarity | $\gamma(B \to D^{(*)}K^{(*)})$ | 7° | 4° | 0.9° | negligible | | triangle | $\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$ | 17° | 11° | 2.0° | negligible | | angles | $\beta(B^0 \to J/\psi K_{\rm S}^0)$ | 1.7° | 0.8° | 0.31° | negligible | | Charm | $A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$ | 3.4 | 2.2 | 0.4 | _ | | <i>CP</i> violation | $\Delta A_{CP} (10^{-3})$ | 0.8 | 0.5 | 0.1 | _ | ### ...and still room for improvement! [LHCb-PUB-2014-40] | Type | Observable | LHC Run 1 | LHCb 2018 | LHCb upgrade Theory | |---------------------|---|---------------|---------------|-------------------------| | B_s^0 mixing | $\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$ | 0.049 | 0.025 | $0.009 \sim 0.003$ | | | $\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$ | 0.068 | 0.035 | 0.012 $\times 3$ ~ 0.01 | | | $A_{\rm sl}(B_s^0) \ (10^{-3})$ | 2.8 | 1.4 | 0.5 0.03 | | Gluonic | $\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$ | 0.15 | 0.10 | 0.018 0.02 | | penguin | $\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$ | 0.19 | 0.13 | 0.023 < 0.02 | | | $2\beta^{\text{eff}}(B^0 \to \phi K_{\text{S}}^0) \text{ (rad)}$ | 0.30 | 0.20 | 0.036 0.02 | | Right-handed | $\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$ | 0.20 | 0.13 | 0.025 < 0.01 | | currents | $ au^{ ext{eff}}(B^0_s o \phi \gamma)/ au_{B^0_s}$ | 5% | 3.2% | 0.6% 0.2 % | | Electroweak | $S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$ | 0.04 | 0.020 | 0.007 0.02 | | penguin | $q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$ | 10% | 5% | 1.9% More $\sim 7\%$ | | | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/}c^4)$ | 0.09 | 0.05 | 0.017 obs ~ 0.02 | | | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 14% | 7% | 2.4% ~ $10%$ | | Higgs | $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$ | 1.0 | 0.5 | 0.19 0.3 | | penguin | $\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ | 220% | 110% | 40% x8 $\sim 5\%$ | | Unitarity | $\gamma(B \to D^{(*)}K^{(*)})$ | 7° | 4° | 0.9° negligible | | triangle | $\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$ | 17° | 11° | 2.0° large negligible | | angles | $\beta(B^0 \to J/\psi K_{\rm S}^0)$ | 1.7° | 0.8° | 0.31° negligible | | Charm | $A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$ | 3.4 | 2.2 | $0.4 \atop 0.1$ large | | <i>CP</i> violation | $\Delta A_{CP} (10^{-3})$ | 0.8 | 0.5 | 0.1 large – | ### LHCb Upgrade Consolidation (Phase-1B) **LHCb Phase-Ib** upgrade during **LS3** aims for **moderate cost** improvements on the Phase-I detector. Possible improvements being investigated which have the potential to extend LHCb physics capabilities: - Improve tracking acceptance for low momentum particles by installing tracking stations on the dipole magnet internal side. - Improve muon acceptance by adding muon chambers around the dipole magnet using the magnet yoke as shielding. - Replace HCAL with a new shielding for the muon chambers. - Innermost ECAL region needs to be replaced during LS3. Rather than using existing spares, use new technologies (see later). - TORCH: as standalone PID detector, or as a timing device, perhaps embedded in ECAL. - SciFi may need some module replacement during LS3. • ••• ### Possibility of LHCb Luminosity increase | Levelled
luminosity
LHCb [10 ³⁴
cm ⁻² s ⁻¹] | Opt fill
length
(IPI/5) [h] | Integrated
luminosity
ATLAS/
CMS [fb ⁻¹ /y] | Integrated
luminosity LHCb
[fb ⁻¹ /y] | β* IP8
[m] | Levelling
time IP8
[h] | |---|-----------------------------------|---|--|---------------|------------------------------| | 0.2 (nom.) | 9.3 | 261 | 10.4 | 3 | 9 | | 1 | 9.1 | 258 | 28 | 3 | 0.5 | | 1 | 9 | 257 | 37 | 2 | 3 | | 1 | 8.8 | 256 | 47 | 1 | 6 | | 2 | 9.1 | 258 | 28 | 3 | 0 | | 2 | 8.9 | 257 | 41 | 2 | 0 | | 2 | 8.5 | 253 | 70 | 1 | 2 | | | | | | G.Ardu | iini, Preliminary | - Thanks to excellent efforts from the LHC team, the possibility of delivering up to 2*10^34 to IP8 (LHCb) has been studied. This would require some extra absorbers to protect machine elements. - Preliminary results allow for up to 300 fb-1 to be collected by LHCb a 6x enhancement without perturbation to ATLAS/CMS. - Calls for substantially upgraded detector, but unlocks great possibilities ## LHCb upgrades being considered for future running at 2*10³⁴ - VELO: double inner radius to survive radiation or (better) replace with thinner sensor, smaller pixels - Supplement downstream SciFi tracking with Silicon (granularity) - Restructure PID (muon and RICH detectors) - Upgraded calorimetry, possibly with TOF capabilities (TORCH) - Timing of track hits to 200 ps to keep PV assignment mismatch at current levels [→ see "Beyond the LHCb Phase-1 Upgrade" workshop, 6/4/2016] ### To summarizealso for Flavor!