Measurements of Vector Boson with Associated Jet production and Ratios with ATLAS

Rhys Owen^{1,2} on behalf of the ATLAS Collaboration University of Birmingham¹, Rutherford Appleton Laboratory² LHCP 2016 13th June 2016

Outline

Introduction

- 2 13 TeV Results
 - *Z* + Jets [ATLAS-CONF-2015-041]

3 7 TeV Results

- Z + Jets [JHEP07(2013)032]
- W + Jets [Eur. Phys. J. C(2015)75:82]
- Ratio R_{Jets} [Eur. Phys. J. C(2014)74:3168]

4 Data vs MC Comparison for Run 2 [ATLAS-PHYS-PUB-2016-003]

5 Summary

2 / 18

Introduction

- Vector boson + jet production is an important benchmark in hadron collider.
- The boson decay is a well understood tag
- Other event variables can then be used to test pQCD
- Practically this can provide feedback on various MC generators and tunes to be used in other analyses

General Analysis Strategy

	$Z (\rightarrow ee)$	$Z (\rightarrow \mu \mu)$
lepton $p_{\rm T}$	$p_{\rm T} > 20 \text{ GeV}$	$p_{\rm T} > 20~{\rm GeV}$
lepton $ \eta $	$ \eta < 1.37$ or $1.52 < \eta < 2.47$	$ \eta < 2.4$
lepton charges	opposite charge	
lepton separation $\Delta R^{\ell\ell}$	$\Delta R^{\ell\ell} > 0.2$	
lepton invariant mass $m^{\ell\ell}$	66 GeV $\leq m^{\ell\ell} \leq 116$ GeV	
jet $p_{\rm T}$	$p_{\rm T}^{\rm jet} > 30 {\rm ~GeV}$	
jet rapidity y^{jet}	$ y^{ m jet} < 4.4$	
lepton-jet separation $\Delta R^{\ell j}$	$\Delta R^{\ell j} > 0.5$	

- W: $E_{\rm T}^{\rm miss} > 25 \, GeV$, $m_T > 40 \, GeV$
- Similar for all analysis (differences noted)

JHEP07(2013)032

4 / 18

Particle Level and Monte Carlo

- Detector results are unfolded to particle level.
- Particle level results can then be compared with several MC generators and theory predictions.
- LO ME < 4 Jets + PS
 - ALPGEN v2.13 + HERWIG v6.520
 - SHERPA v1.4.1
 - Madgraph5_aMC@NLO+Pythia8 CKKW-L A/B†
- NLO ME + PS
 - MC@NLO v4.01 + HERWIG. (+1 Jet)
 - Madgraph5_aMC@NLO with FxFx Merging (+2 Jets)†
 - Sherpa 2.X (NLO 0,1,2 Jets + LO 3,4 Jets)[†]
- Fixed order NLO Calculation
 - BLACKHAT + SHERPA
- Approx. NNLO
 - LoopSim ($W \ge 1$ Jets)
- Higher orders
 - ▶ HEJ (W ≥ 2Jets)

†New in Run 2!

Z +Jets @ 13 TeV

- First ATLAS analysis of V+Jets using 85pb⁻¹ of data at 13TeV
- Fiducial selection following the Inclusive 13TeV analysis (lepton $p_T > 25$ GeV)

ATLAS-CONF-2015-041

Z +Jets @ 13 TeV

- SHERPA v2.1.1
- MadGraph5 + aMC@NLO v2.2.2
- Systematic uncertainties 10% - 20% for > 1 to > 4 Jets
- Already good agreement between MC and Data @ 13TeV

ATLAS-CONF-2015-041

Rhys Owen (University of Birmingham, RAL)

LHCP 2016

Z +Jets @ 7TeV

- Results here unfolded to particle level.
- Using 4.6fb^{-1} of 7 TeV data
- Systematic uncertainties 7% 17% for ≥ 1 to $~\geq$ 4 Jets

Rhys Owen (University of Birmingham, RAL)

JHEP07(2013)032

Z +Jets @ 7TeV

 3rd jet is important for rejecting backgrounds in Vector Boson Fusion (VBF) Higgs selection.

JHEP07(2013)032

Z +Jets @ 7TeV

• SHERPA 1.4.1 starts to show greater deviations here

JHEP07(2013)032

```
W + Jets @ 7TeV
```


- Challenging analysis
- Much larger background than *Z* + *Jets*
 - QCD Multijet
 - ► tī
- Systematic uncertainties 8% 25% for
 - ≥ 1 to \geq 4 Jets
 - Driven by backgrounds especially at high multiplicities

Eur. Phys. J. C(2015)75:82

Rhys Owen (University of Birmingham, RAL)

LHCP 2016

W + Jets @ 7TeV

Eur. Phys. J. C(2015)75:82

Rhys Owen (University of Birmingham, RAL)

12 / 18

W + Jets @ 7TeV

• Again angular distributions show larger differences between predictions.

Eur. Phys. J. C(2015)75:82

Rhys Owen (University of Birmingham, RAL)

Ratio R_{Jets} W/Z@ 7TeV

• Systematic uncertainties 1.2% - 18% for ≥ 1 to ≥ 4 Jets

Eur. Phys. J. C(2014)74:3168

Data vs MC Comparison for Run 2

- Unfolded results can also be used to investigate the performance of future generator developments.
- This information is invaluable for several other analysis for Run 2

ATLAS-PHYS-PUB-2016-003

Data vs MC Comparison for Run 2

• SHERPA 2.X shows improvement in these plots compared to the 1.X version.

ATLAS-PHYS-PUB-2016-003

Rhys Owen (University of Birmingham, RAL)

Conclusions

- Vector boson + Jet production measurements are a powerful tool.
- Provide unique tests on QCD
- Measurements also test Monte Carlo to be used in other analyses.
- Continues to be an important area for study at higher centre of mass energies in Run 2 building on the work which has already been done.