Searches for long-lived and highly-ionizing particles at the CMS and ATLAS experiments

Teresa Lenz (on behalf of the ATLAS and CMS Collaborations)

GEFÖRDERT VOM

Universität Hamburg

LHCP 2016 June 17th, 2016

Introduction

- Long-lived particles are contained in many extensions of the SM
 - Supersymmetric models (AMSB, split supersymmetry, ...);
 - Universal extra dimensions;
 - Technicolor; ...
- Long-lived particles can enter/pass through the detector

A variety of long-lived searches at CMS and ATLAS

Particles can be neutral or charged or change their charge through interactions.

(Displaced) jets Lepton jets Displaced leptons Displaced vertices Displaced / delayed photons Stopped particles Disappearing tracks Heavy stable charged particles Multi-charged particles Monopoles/highly charged particles

A variety of long-lived searches at CMS and ATLAS

Particles can be neutral or charged or change their charge through interactions.

Lepton jets Displaced leptons Displaced vertices Displaced / delayed photons Stopped particles Disappearing tracks Heavy stable charged particles Multi-charged particles Monopoles/highly charged particles

Long-lived particle searches

(Displaced) jets

Energy loss per path length - dE/dx

Mean energy loss described by Bethe formula

$$\langle \frac{dE}{dx} \rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{l^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Energy loss per path length - dE/dx

Mean energy loss described by Bethe formula

$$\langle \frac{dE}{dx} \rangle = \mathcal{K}(z^2) \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{l^2} - \frac{\beta^2}{\beta^2} - \frac{\delta(\beta\gamma)}{2} \right]$$

Energy loss per path length - dE/dx

Mean energy loss described by Bethe formula

$$\langle \frac{dE}{dx} \rangle = K \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2}{l^2} \gamma^2 T_{\text{max}} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Large dE/dx for
 - Low velocities (high masses)
 - Multiple charges

High-momentum Standard Model particles are minimally ionizing (MIPs)

$d\mathsf{E}/d\mathsf{x}$ measurement at CMS

 $\Delta E / \Delta x$ measurements

- CMS tracker fully silicon based
- Inside a 3.8T solenoid
- Coverage up to $|\eta| = 2.5$
- $R = 4.4 \, \text{cm} 1.1 \, \text{m}$
- Typically around 17 hits

dE/dx estimator (discriminator)

- Harmonic-2 estimator $I_{h} = \left(\frac{1}{N}\sum_{i=1}^{N}(\Delta E_{i}/\Delta x_{i})^{-2}\right)^{-1/2}$
- Likelihood discriminator
 - Built from hypothesis distribution of MIPs

Long-lived particle searches

dE/dx measurement at ATLAS

- Mixture of silicon tracker and transition radiation tracker (TRT)
- Inside a 2T solenoid
- Coverage up to $|\eta| = 2.5$
- New pixel layer at 13 TeV
- ▶ R = 3.3 cm 1.1 m

Silicon pixel tracker

- Typically around four measurements
- Estimation of mean/most probable energy loss
- Estimation of dE/dx significance

Long-lived particle searches

Transition radiation tracker

- Typically around 32 straw hits
- Estimation of dE/dx significance
- Comparison of high-threshold to low-threshold hits

Heavy stable charged (Q = e) particles - CMS

CMS-PAS-EXO-15-010

13 TeV

- Search for new particles by exploiting low velocity ($\beta < 1$)
 - Large ionization losses (dE/dx)
 - Long time-of-flight (TOF)

Selection ("tracker-only" analysis)

- Trigger:
 - Muon ($p_{\rm T}^{\mu}$ > 50 GeV) OR
 - MET (*E*_T^{miss} > 170 GeV)
- Candidate track with:
 - ▶ p_T > 55 GeV
 - High-quality track
 - Cluster cleaning
 - Track isolation: $\Sigma p_{\rm T} < 50 \, {\rm GeV}$
 - Calorimeter isolation: E/p < 0.3

Background arising from tails in the dE/dx distribution of MIPs

Long-lived particle searches

Heavy stable charged (Q = e) particles - CMS

CMS-PAS-EXO-15-010

13 TeV

Background estimation:

- ABCD method using dE/dx likelihood discriminator l_{as} and p_T
- SM particles:
 *p*_T and *I*_{as} uncorrelated

Mass reconstruction with:

- $\bullet I_h = K \frac{m^2}{p^2} + C$
- K and C determined from low-momentum protons in data
- ► Binned probability of I_h (p) from control regions B (C) → prediction of mass spectrum in region D

Long-lived particle searches

Heavy stable charged (Q = e) particles - CMS

CMS-PAS-EXO-15-010

13 TeV

Interpreted in:

- Split supersymmetry
- mGMSB models

Limits up to m = 1590 GeV for long-lived gluinos m = 1020 GeV for long-lived stops m = 480 GeV for long-lived staus

Heavy long-lived charged particles - ATLAS

13 TeV

arXiv:1606.05129

- Search using pixel dE/dx + time-of-flight
- Similar to CMS analysis

Mass reconstruction from dE/dx and time-of-flight

Interpretation: Long-lived R-hadrons: gluinos, stops, sbottoms

Limits up to m = 1580 GeV for gluinos m = 890 GeV for stops m = 805 GeV for sbottoms

Long-lived particle searches

Search for multi-charged particles - ATLAS

8 TeV

- dE/dx estimators:
 - Pixel, TRT, MDT: $S(dE/dx) = \frac{dE/dx_{track} - \langle dE/dx_{\mu} \rangle}{\sigma(dE/dx_{\mu})}$
 - TRT: Fraction of hits passing high threshold f^{HT}
- Initial selection with muon system (> 7 MDT hits)
- Candidate track selection (high quality, $p_{\rm T} > 30/40$ GeV, isolated, ...)
- Tight selection based on S_{pixel}(dE/dx) and f^{HT}

Search for multiple-charged particles - ATLAS

Eur.Phys.J. C75 (2015) 362

Background estimation

► ABCD with S_{TRT}(dE/dx) and S_{MDT}(dE/dx)

$$\blacktriangleright \ N^D_{\text{exp}} = N^B_{\text{obs}} \cdot f^{C/A}_{\text{preselection}}$$

	N ^B _{obs}	f	$N_{\rm exp}^{\rm D}$	$N_{\rm obs}^{\rm D}$
z = 2	76	1.8×10^{-4}	0.013 ± 0.002	0
$z \ge 3$	1251	$2.1 imes 10^{-5}$	0.026 ± 0.003	0

Interpreted in:

 DY production model with pure electromagnetic coupling

Search for multiple-charged (Q=2) particles - CMS 13 TeV

CMS-PAS-EXO-15-010

- Optimized selection for multiplecharged particles only at 8 TeV
 - Harder selection cut in dE/dx
 - No cluster cleaning
 - No E/p selection requirement

Interpreted in:

 DY production model with pure electromagnetic coupling

Search for magnetic monopoles - ATLAS

- Dirac argument: Magnetic monopoles
- ► Magnetic charge (g_D) corresponds to electric charge via:

$$\frac{g_D}{e} = \frac{1}{2\alpha_e} \approx 68.5$$

- \rightarrow Huge ionization losses!
- Dedicated software trigger for highly-ionizing particles
 - # of high-threshold (HT) hits: $N_{\text{TRT}}^{\text{HT}}$
 - Fraction of HT hits: f^{HT}_{TRT}
- Discriminating variables: f^{HT}_{TRT}, E, energy dispersion in the electromagnetic calorimeter (w)

Search for magnetic monopoles - ATLAS

Background estimation:

- Background arising from QCD-multijet and W+jet events
- ABCD with f^{HT}_{TRT} and w
- Increasing correlations between w and f^{HT}_{TRT} for decreasing w

Phys.Rev.D 93, 052009 (2016)

Interpreted in:

- DY production model
- Model-independent, single-particle production

Conclusion

Searches for long-lived and highly-ionizing particles at the CMS and ATLAS experiments

- ► Long-lived searches sensitive to a variety of models (not only SUSY ...)
- New 13 TeV results available at CMS and ATLAS
- Many new results are expected!
- Typically very low backgrounds
- "data-driven" background estimations
- Good understanding of detector is crucial
- So far, no evidence for physics beyond the Standard Model
- Still, many different scenarios and models need to be tested
- Long-lived particle searches can fill up the gap not covered by conventional searches (e.g. mass-degenerate scenarios, ...)

Thank you

Backup

Heavy stable charged (Q = e) particles - CMS

Number of predicted and observed events

Reconstructed mass (tracker+TOF)

					Number of e	vents
		Selection cuts			$\sqrt{s} = 13 \text{ TeV}$	
	p_T (GeV)	I _{as}	$1/\beta$	Mass (GeV)	Pred.	Obs.
Trk-only	> 65	> 0.3	-	> 0	28.8 ± 6.1	24
				> 100	17.8 ± 3.8	13
				> 200	2.6 ± 0.6	2
				> 300	0.53 ± 0.12	0
				> 400	0.16 ± 0.035	0
Trk+TOF	> 65	> 0.175	> 1.250	> 0	17.9 ± 3.6	13
				> 100	4.1 ± 0.8	3
				> 200	0.60 ± 0.12	0
				> 300	0.12 ± 0.024	0

Systematic uncertainties

Source of Systematic Uncertainties	Relative Uncertainty (%)		
Signal acceptance	Trk-only	Trk+TOF	
- Trigger efficiency	13	13	
 Track momentum scale 	< 20	< 20	
 Track reconstruction 	< 2	< 2	
 Ionization energy loss 	< 15	< 15	
- HIP background	< 25	< 30	
- Time-of-flight	-	< 5	
- Muon reconstruction	-	2	
- Pileup	< 1	< 1	
Total uncertainty on signal acceptance	< 35	< 50	
Background uncertainty	20	20	
Luminosity uncertainty	4.6		

Heavy long-lived charged particles - ATLAS

Mass measurement with dE/dx

- $\mathsf{MPV}_{dE/dx} = \frac{p_1}{\beta^{p_3}} \ln \left(1 + (|p_2|\beta\gamma)^{p_5}\right) p_4$
- Mass estimate: $m_{\beta\gamma} = p/\beta\gamma$

Limits

Metastable heavy charged particles - ATLAS

Impact of fourth pixel layer Result table

- Two different selections:
 - Metastable R-hadron selection (veto reconstructed muons)
 - Stable R-hadron selection (no muon veto)

Selection region	Background exp.	Data
Metastable R-hadron	$11.1 \pm 1.7 \pm 0.7$	11
Stable R-hadron	$17.2 \pm 2.6 \pm 1.2$	16

Background estimation

- Data-driven
- Distributions of key-variables from control regions (inverting E_T^{miss} or dE/dx)

Metastable heavy charged particles - ATLAS

Reconstructed mass for both Limit in lifetime vs. mass plane selections

Search for multi-charged particles - ATLAS

ABCD regions for z = 2 and $z \ge 3$ selection

dE/dx significance for TRT and MDT

Long-lived particle searches

Teresa Lenz

Search for magnetic monopoles - ATLAS

Long-lived particle searches

Teresa Lenz

Definition of fiducial regions

▶ 90% selection efficiency with standard deviation < 12.5%