

Searches for diboson resonances with the CMS experiment

Jordan Damgov (Texas Tech University) on behalf of the CMS Collaboration

LHCP 2016, Lund, Sweden, June 13–18, 2016

Outline

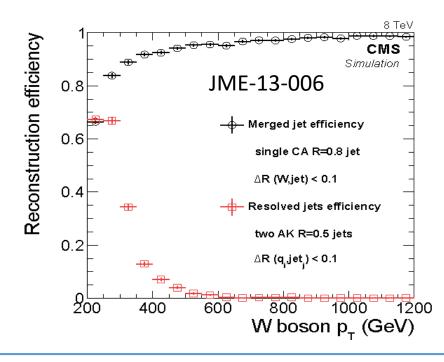
Resonance searches with boosted topologies at 13 TeV (m_x above 800 GeV)

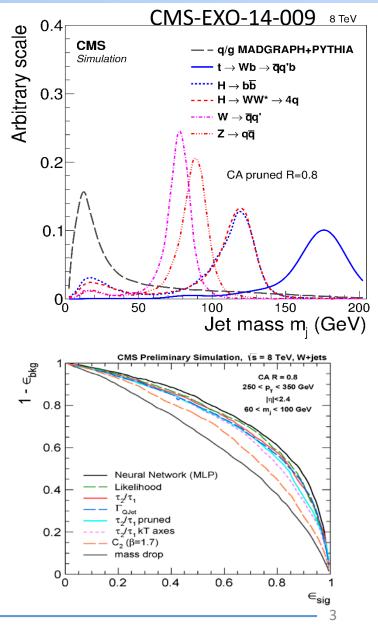
- Reconstruction techniques for studies with boosted topologies
- ♦ VH \rightarrow Ilbb, Ivbb, vvbb (CMS-PAS-B2G-16-003)
- ♦ VV \rightarrow lvqq, qqqq (CMS-PAS-EXO-15-002)
- ♦ VW \rightarrow lvqq, low mass extension (CMS-PAS-B2G-16-004)
- VV and VH combination 8 and 13 TeV (CMS-PAS-B2G-16-007)

Resonance searches with non-boosted topologies (m_{χ} in 250-1200 GeV)

- ↔ ZZ → $2l2\nu$ (CMS-PAS-HIG-16-001)
- HH \rightarrow bbbb (CMS-PAS-HIG-16-002)
- ↔ HH → WWbb → $l\nu l\nu bb$ (CMS-PAS-HIG-16-011)
- HH \rightarrow ττbb (CMS-PAS-HIG-16-013)

Theory models (typical benchmark):

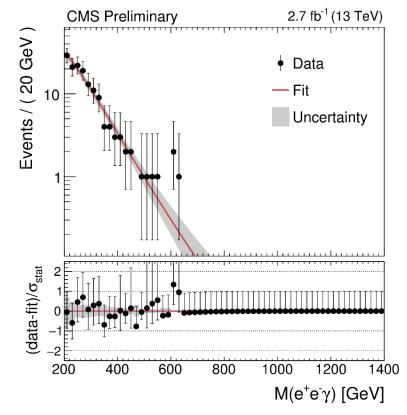

- Spin-0: Radion; two Higgs doublet model (2HDM), etc.-
- □ Spin-1: Heavy Vector Triplet (model B)
- Spin-2:Bulk scenario of RS Wrapped Extra Dimensions


*More recent results

Reconstruction of boosted W/Z/H

Heavy resonances decay results in boosted dibosons, hadronic decays enhancing the rates
➢ it is crucial to identify boosted V -> qq decays

 Anti-k_t jets with R = 0.8, pruned with CA re-clustering with p_T^{min} fraction of 10%
 Substructure exploited mainly with N-subjettiness (τ₂/τ₁), other variables studied

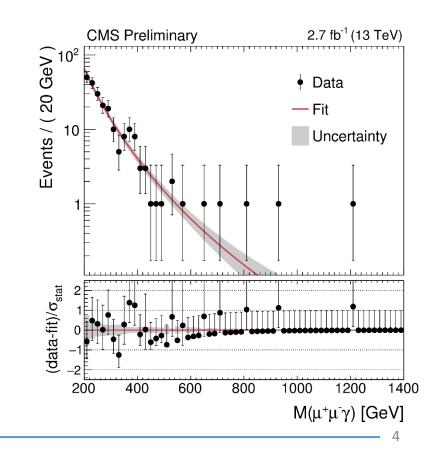


Ζγ ->ΙΙγ

CMS-PAS-EXO-16-019

Event selection:

- \succ two opposite sign leptons (e, μ)
- p_T¹ > 25,20 GeV, p_T^γ >40 GeV
- ➢ 50 < mll < 130</p>
- ▷ $p_T^{\gamma} > 40/150 \text{ m}_{Z\gamma}$ reduces further the background

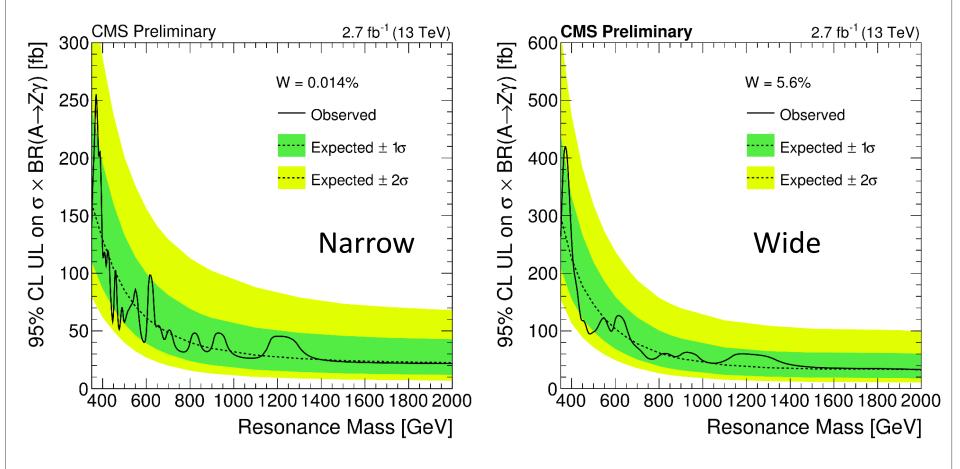


Background: Zγ (90%), Z+jets (10%)

✓ Described by parametric function

$$f(m_{Z\gamma}) = m_{Z\gamma}^{a+b\log m_{Z\gamma}}$$

✓ Checks with simulation.



Zγ ->llγ: limits

CMS-PAS-EXO-16-019

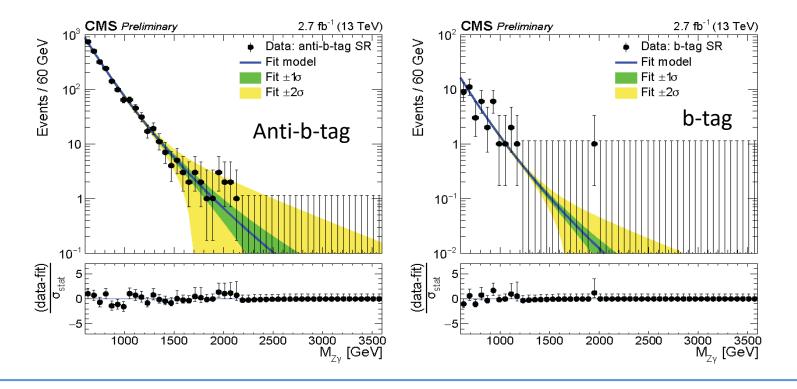
Scalar resonance decaying to Zγ:
✓ Narrow resonance: 0.014%
✓ Wide resonance: 5.6%

An alternative cross-check with cut-based analysis has been performed.

Ζγ ->qqγ

CMS-PAS-EXO-16-020

Event selection:

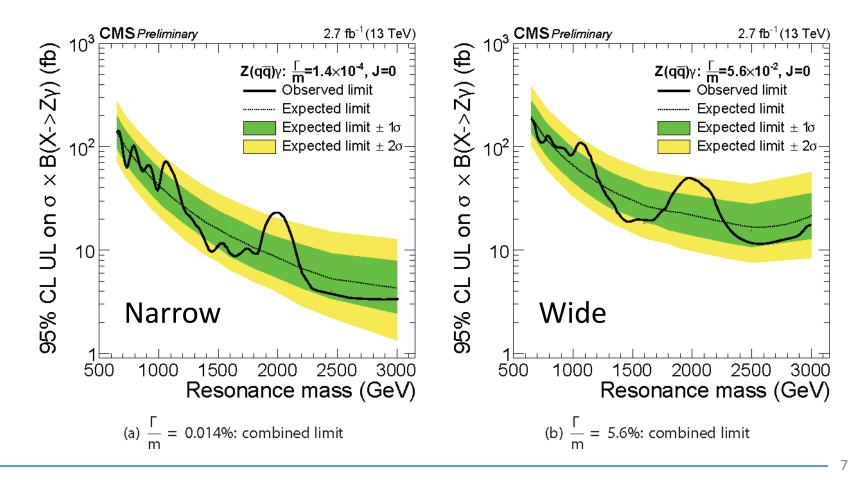

- ✓ Photon $p_T > 180$ GeV, $|\eta| < 1.4$, $p_T^{\gamma} > 0.34$ m_{Zy}
- ✓ AK8 jet p_T > 200 GeV, 75 < m_J^{prun} < 105 GeV</p>
- ✓ Sub-jet b-tagging
 - Two categories, anti-b-tagged and b-tagged (20% gain in sensitivity)
- ✓ m_{Jy} > 600 GeV

Backgrounds: γ+jets and multi-jets

Described by parametric function

 $\frac{dN}{dM_{Z\gamma}} = P_0 \times (M_{Z\gamma}/\sqrt{s})^{P_1 + P_2 \times \log(M_{Z\gamma}/\sqrt{s})},$

 ✓ Cross checks with alternative functions and with and without signal injection.


Zγ-> qqγ, limits

CMS-PAS-EXO-16-020

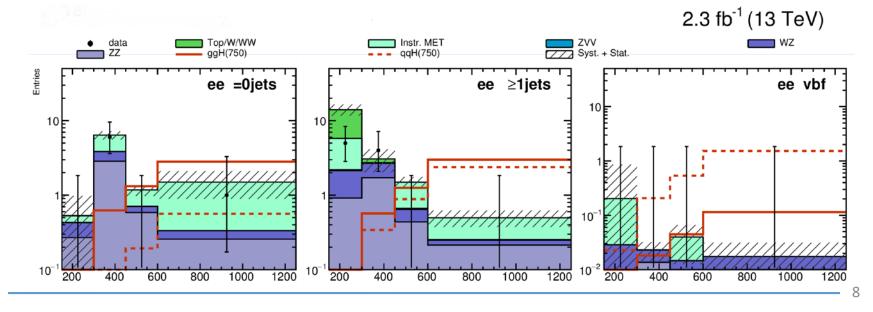
Scalar resonance decaying to Zy:

- ✓ Narrow resonance: 0.014%
- ✓ Wide resonance: 5.6%

Zγ- the leptonic channel is twice more sensitive around 750 GeV, while the hadronic channel dominates at higher masses.

ZZ-> 2l2v

CMS-PAS-HIG-16-001


Event selection:

- ✓ e^+e^- or $\mu^+\mu^-$ with $p_T > 25$ GeV
- ✓ |m_z-m_{||}|<30 GeV, p_T^{||}>55 GeV
- ✓ E_T^{miss} >125 GeV, b-jet veto, 3rd lepton veto *Three categories:*
 - VBF: at least 2 forward jets, |Δη|>4, m_{ii}> 500 GeV, no central jets
 - ≥ 1 jet: $p_T > 30$ GeV failing VBF selection
 - > 0 jets: no jets with $p_T > 30$ GeV

Backgrounds:

- ✓ Z+jets modeled with γ +jets
- ✓ Top production and WW modeled with eµ using 40<m_∥ <70 GeV sideband
- ✓ ZZ, WZ taken from the simulation (NNLO,NLO)

Transverse mass distribution is used as observable in shape-based analysis

ZZ-> 212v

_@10⁵ ⊓ 2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) ____10⁵ ⊧ Observed CMS Preliminary Predicted Expected Observed Predicted Expected CMS $\widehat{\Sigma}$ ---- C'=1.0 - C'=1.0 Ŕ Preliminary ···· C'=1.0 ---- C'=1.0 - C'=1.0 · C'=1.0 Z ← H ← 06) %560 10³ - C'=0.6 C'=0.6 ---- C'=0.6 - C'=0.6 C'=0.6 Ŷ - C'=0.3 ---- C'=0.3 - C'=0.3 --- C'=0.3 C'=0.3 C'=0.3 ± 10⁴ C'=0.1 mass and width, C'=0.1 C'=0.1 C'=0.1 --- C'=0.1 - C'=0.1 $\sigma_{95\%}$ (dd \cdot modelled as an gluon-fusion **VBF** 10³ electroweak singlet in and the second s 10² 10² 1500 M_H [GeV] 500 150 M_H [GeV] 500 1000 1000 2.3 fb⁻¹ (13 TeV) 2.3 tb ' (13 TeV) 2.3 tb ' (13 TeV) 10³(qJ) (ZZ ← $\begin{array}{c} 10^3 \\ 0 \\ 10^{\circ} \\ 10^{\circ} \end{array} (\text{fg}) \rightarrow \text{H} \rightarrow \text{ZZ}) \text{ (fb)} \end{array}$ 1 _{کل} 1/1 0.9 ال الا 1/1 0.9 SM 10.9 Preliminary **CMS** Freliminary CMS['] Preliminary 0.8 0.8 0.8 H ← pp) 0.7 0.7 0.7 Opserved α^{95%} (0 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 = 1.09 ± 0. h(125) gluon-fusion 0.1 0.1 0.1 0 0 0 1500 M_H [GeV] 1500 M_H [GeV] 1500 M_H [GeV] 500 500 500 1000 1000 1000 VBF

CMS-PAS-HIG-16-001

Generic scalar of variable mixing with Higgs boson.

±10² 10

Observed $\mu = \sigma_{a_{5\%}}$

10

1

¹ 10⁻¹

9

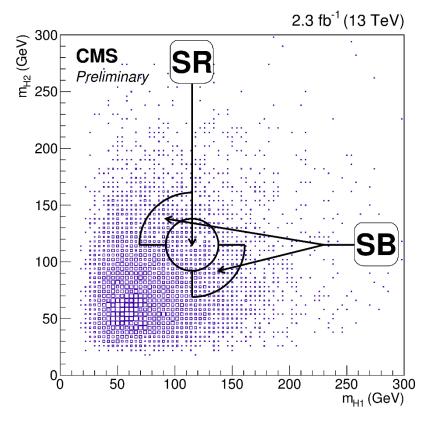
HH -> bb bb

CMS-PAS-HIG-16-002

Event selection:

4 resolved jets, $p_T > 30$ GeV, b-tagged

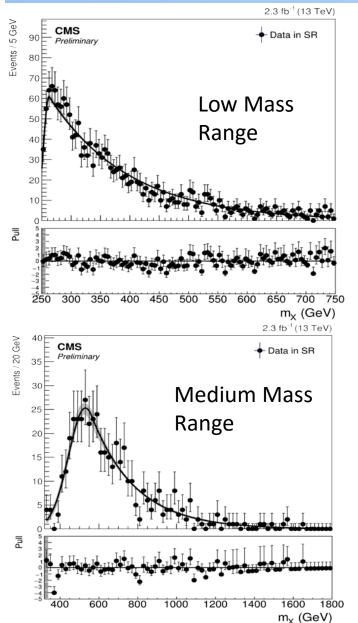
Two region in resonance mass Low Mass Candidate (LMR)260-400 GeV Medium Mass Candidate (MMR) 400-1200 GeV


➢ Require △R<1.5 for jets from same H in MMR</p>

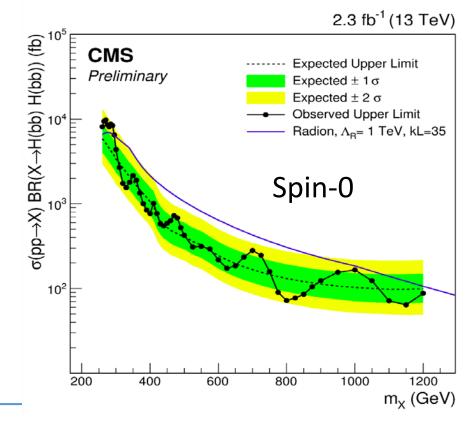
$$\chi^2 = \left(\frac{m_{H1} - 115}{\sigma}\right)^2 + \left(\frac{m_{H2} - 115}{\sigma}\right)^2$$

 σ = 17 GeV for LMR, 23 GeV for MMR

 $\boldsymbol{\sigma}$ is optimized for sensitivity.


Signal region: $\chi < 1$ Sideband region: $1 < \chi < 2$, and $(m_{H1}-115).(m_{H2}-115) < 0$

Background modeling: **shape** of the m_x distribution for multi-jets and top are estimated from sideband. Validated in control region (SR,SB) with inverted b-tag.


HH -> bb bb, limits

CMS-PAS-HIG-16-002

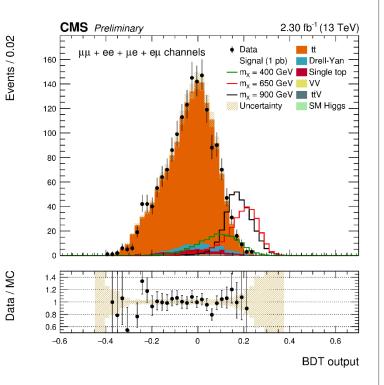
No significant excess is observed.

Upper limits on the production cross section for narrow-width resonance decaying into two Higgs bosons in the mass range from 260 to 1200 GeV, are set.

HH->WW bb->lvlvbb

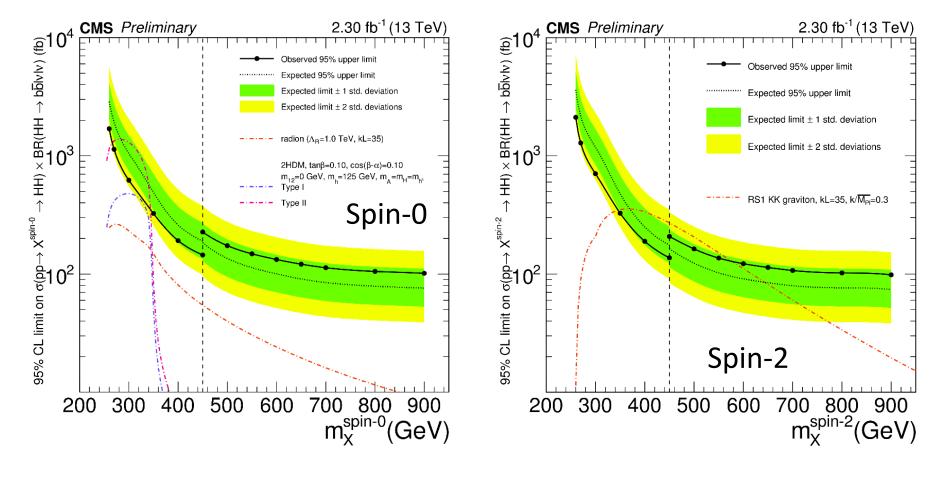
CMS-PAS-HIG-16-011

Event election:


two opposite sign leptons $\mu p_T > 20/10 \text{ GeV}; e p_T > 20/15 \text{ GeV}$ $12 < m_{||} < 76 \text{ GeV}$ two b-tagged jets $p_T > 20 \text{ GeV}$ $\Delta R_{||} < 2.2, \Delta R_{jj} < 3.1 \text{ and } \Delta \phi_{||,jj} > 1.5$

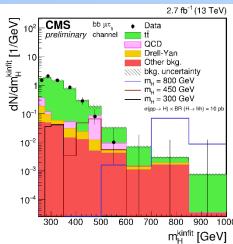
Backgrounds: top-pair production is the dominant.

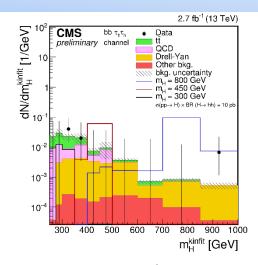
Boosted decision trees(BDTs) discriminants are used to further improve signal-to-background separation. Two BDTs are trained


- > On m_{χ} = 400 for m_{χ} < 450 GeV region
- > On $m_x = 650$ for $m_x > 450$ GeV region

Applying m_{jj} cut around 125 GeV Signal-depleted regions are used to define the background normalization.

HH->WW bb->lvlvbb

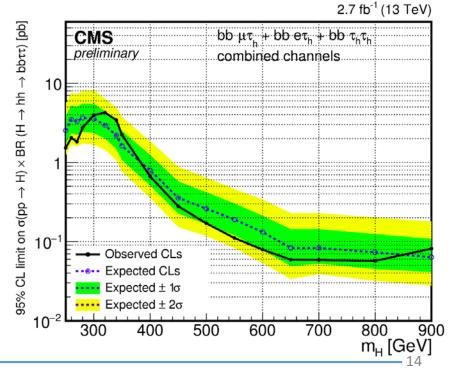

No significant excess is observed. Upper limit on the narrow-width resonance production cross section is imposed for mass range 260-900 GeV.



ΗΗ->ττbb

CMS-PAS-HIG-16-013

Event selection: $\mu \tau_h$, $e \tau_h$, $\tau_h \tau_h$ two opposite charge leptons $\mu \tau_h$, $e \tau_h$: $\mu(e) p_T > 19(24) \text{ GeV}$ and $\tau_h p_T > 20 \text{ GeV}$ $\tau_h \tau_h$: $p_T > 45 \text{ GeV}$ two b-tagged jets $p_T > 30 \text{ GeV}$ $80 \text{ GeV} < m_{\tau\tau}(m_{bb}) < 160 \text{ GeV}$

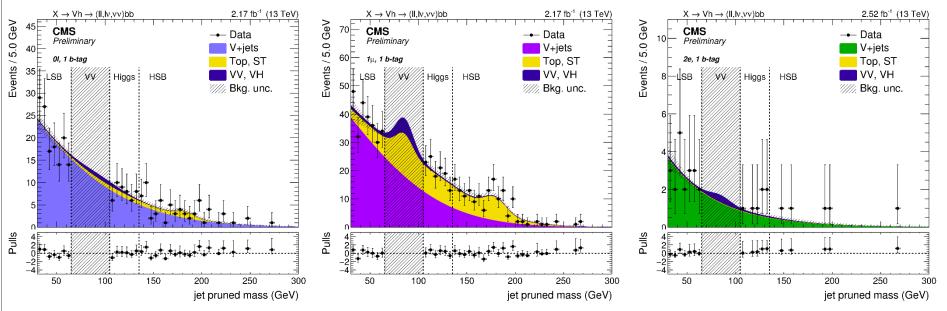


Backgrounds:

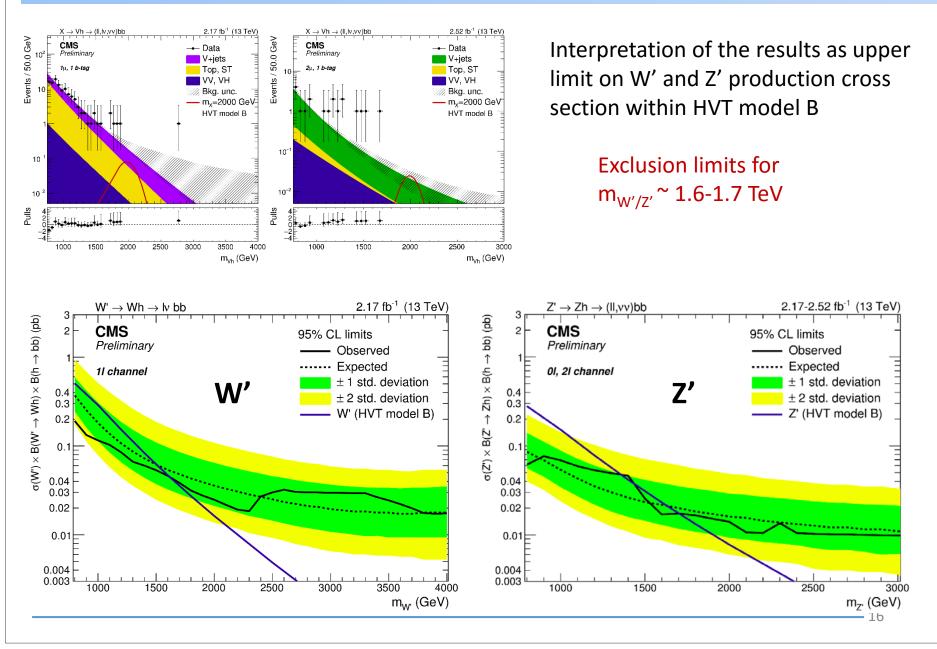
Top-pair-normalized to NNLO. A kinematic re-weighting is applied to match better the p_T in the data. Multi-jets is determined from data using jet-enriched region.

 M_{hh} is reconstructed using kinematic fit, using hypothesis of two 125 GeV Higgs bosons.

Model independent resonance search.


VH -> llbb, lvbb, vvbb

15


Event selection:

vvbb: E_T^{miss} >200 GeV, $\Delta \varphi$ (jet, E_t^{miss}) > 2, b-jet veto **lvbb**: μ (el) p_T > 55 (135) GeV, veto extra leptons, E_T^{miss} >80 GeV (el), p_T^{W} > 200 GeV **llbb**: μ (el) p_T > 55 (135) GeV, 70< m_{II} < 110, p_T^{Z} > 200 GeV, $|\Delta \eta$ (II,jet)|<5, $\Delta \varphi$ (II,jet) >2.5 *Higgs identification*: AK8 jet p_T >200 GeV, 105< m_J <135 GeV, 1 or 2 b-tag sub-jets. \searrow 10 categories - by lepton count (0,1,2), lepton flavor (e, μ) and number of b-sub-jets.

Backgrounds: V+jets (dominant) estimated from data in the sidebands of m_J. The top quark background is evaluated from top-enriched control regions.

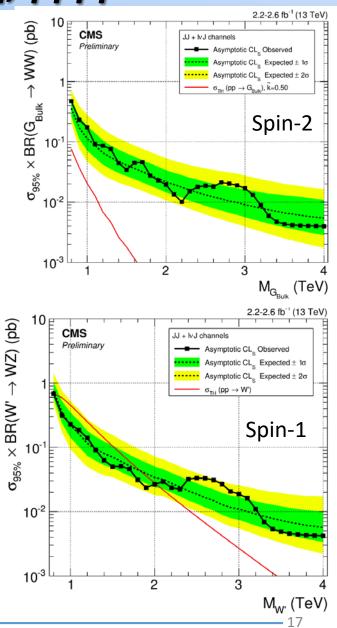
VH -> IIbb, Ivbb, vvbb CMS-PAS-B2G-16-003

WW/WZ/ZZ->lvqq,qqqq CMS-PAS-EXO-15-002

Event selection:

lvqq: $\mu(e)$ p_T > 53(120) GeV, E_T^{miss}>40 (80) GeV, veto on extra leptons, b-jet veto, 1 AK8 jet back-to-back selection qqqq: 2 AK8 jet, |η1-η2|<1.3 both: AK8 jet, p_T >200 GeV, 65 < m_J < 105GeV

τ2/τ1 categories: HP (0,0.5), LP (0.5,0.7) W/Z categorization: m_J (65,85) / (85,105) GeV

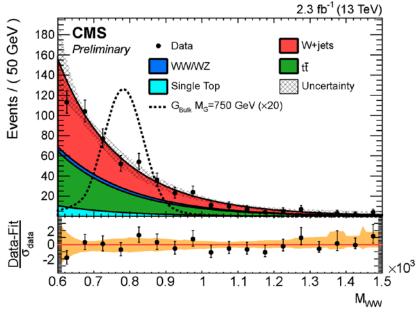

Backgrounds:

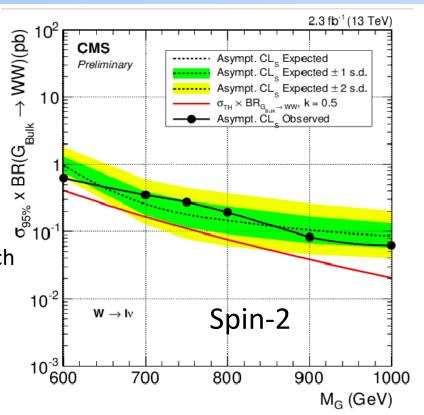
lvqq: W+jets shape and normalization evaluated from data

qqqq: parametric fit to data in the signal region

Upper limits on the production cross section:

- Bulk graviton (Spin-2)
- ➢ W', HVT model B (Spin-1)



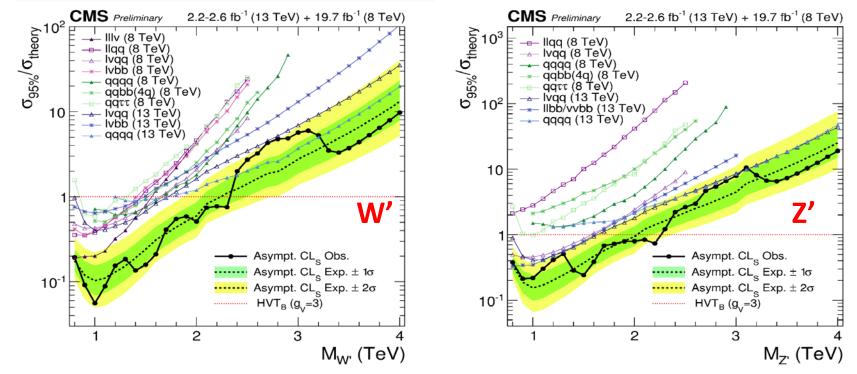

WW -> lvqq, 0.6-1.0 TeV CMS-PAS-B2G-16-004

Event selection:

Lepton: $\mu(e) p_T > 40(45) \text{ GeV}$, veto on a second lepton, b-jet veto $E_T^{miss}>40$ (80) GeV for $\mu(e)$ AK8 jets, $p_T > 200 \text{ GeV}$, $65 < m_J < 95 \text{ GeV}$ N-subjettiness: $\tau 2/\tau 1 < 0.45$ Back-to-back topology requirements. Backgrounds: W+jets estimated from data.

control sample in data.

No significant excess is observed

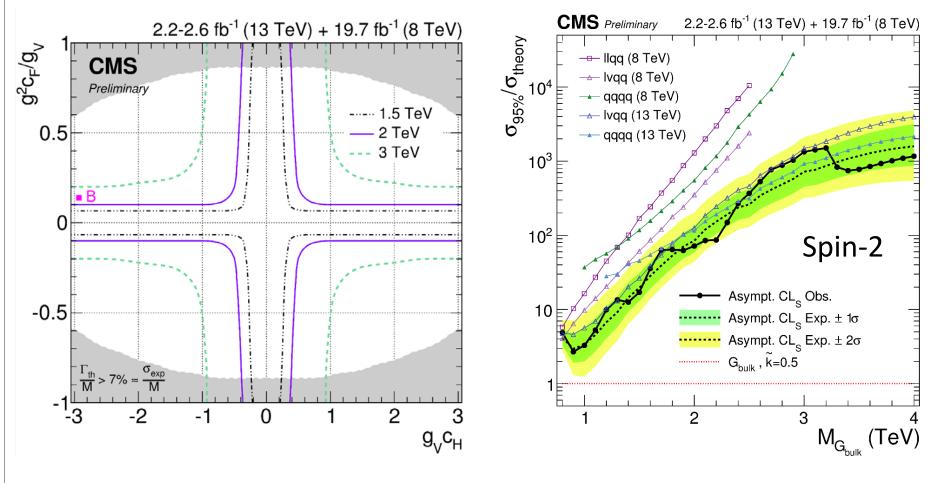

Upper limits on Bulk Graviton production cross section are set.

The combination includes:

CMS-PAS-B2G-16-007

8 TeV (19.7 fb-1): 3lv, lvqq, llqq, qqqq, lvbb, qqbb/qqqqqq, qqττ 13 TeV (2.2-2.6 fb-1): lvqq, qqqq, llbb, lvbb, vvbb

Theory models: W', Z' in HVT model B and Bulk graviton


Excluding W' and Z' with masses up to about 2.3 TeV (HVT model B)

19

CMS-PAS-B2G-16-007

Exclusion in the plain of HVT-model couplings

Limits on Bulk graviton production

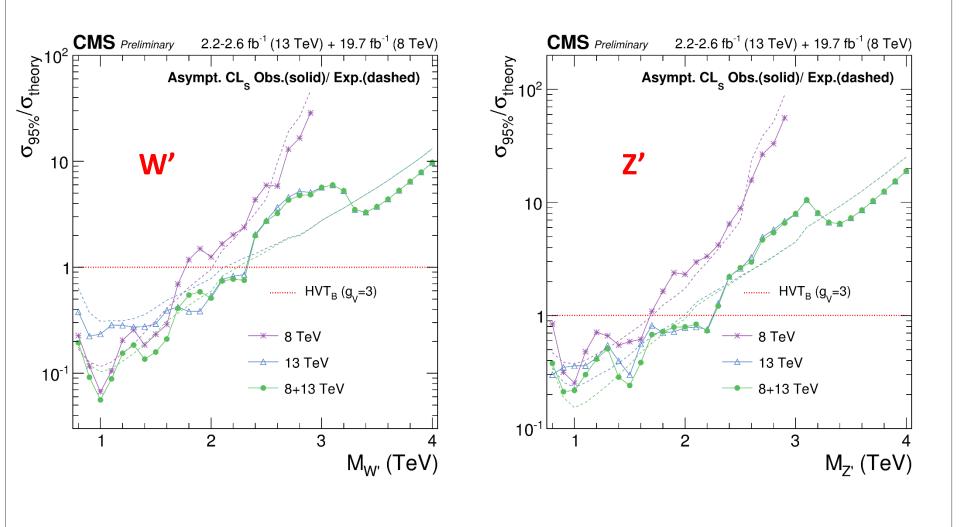
20

CMS-PAS-B2G-16-007

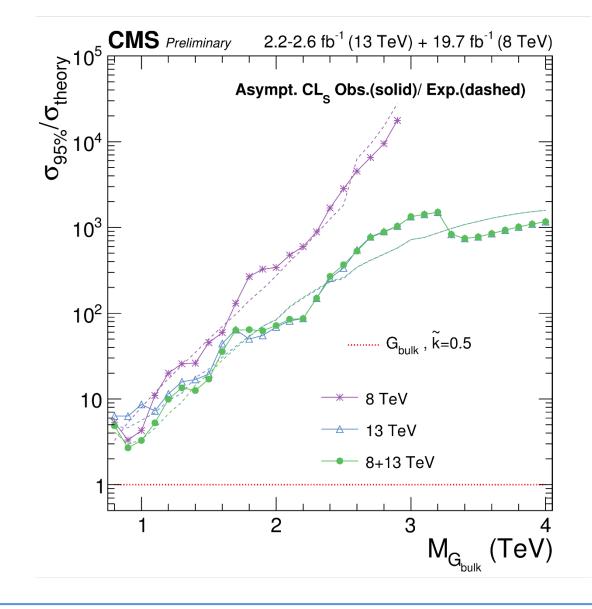
Statistical significance of excesses observed at **1.8** TeV in the various searches, expressed in standard deviations.

Combination	W	Z	HVT (W ⁺ +Z ⁺)	G _{bulk}
VV 13 TeV	0.00	0.10	0.00	0.00
VV+VH 13 TeV	0.00	0.00	0.00	-
VV 8 TeV	1.22	0.56	1.03	1.61
VV 8+13 TeV	0.20	0.46	0.33	0.35
VH 8 TeV	2.05	0.56	1.79	-
VV+VH 8 TeV	2.22	0.77	1.95	-
VV+VH 8+13 TeV	0.86	0.00	0.83	-

Summary

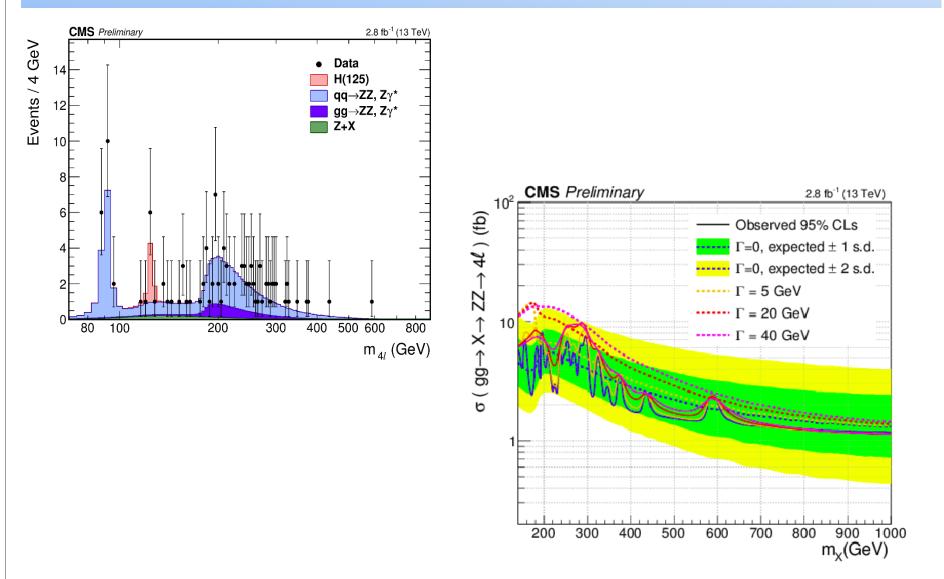

Searches for heavy resonances in di-boson final states have been performed with 2.2-2.6 fb⁻¹ of data at 13 TeV with the CMS detector.

- Mass range 250-4000 GeV is explored
- ✤ No significant deviation from the SM prediction is observed.
 - Upper limits on production cross section for resonances are derived
- Combination of the searches for VV and VH resonances at 8 and 13 TeV is performed.
 - > 2015 13 TeV data disfavors the 2 TeV excess seen in 8 TeV data


New results with 2016 data are coming soon!

BACKUP

WW,WZ,ZZ,WH and ZH combination 8+13 TeV CMS-PAS-B2G-16-007



CMS-PAS-B2G-16-007

ZZ->2|2|

CMS-PAS-HIG-15-004

