

Vector Boson studies with CMS

LHCP, 2016

Aram Apyan On behalf of CMS collaboration

Standard candles

10⁸

10

10⁶

10⁵

10⁴

 10^{3}

 10^{2}

10¹

 (GeV^2)

 \mathbf{Q}_2

Q = M

M = 100 GeV

M = 10 Ge'

10⁻⁶

10⁻⁵

10⁻⁴

13 TeV LHC parton kinematics

W.J. Stirling

M = 1 TeV

HERA

10⁻³

 10^{-2}

M = 10 Te\

fixed

target

 10°

 10^{-1}

- Started the new run with the W, Z cross sections and ratio measurements
 - Via leptonic final states
 - Clean experimental signature
 - Large dataset
- Detector and physics commissioning
 - Luminosity calibration
 - Lepton efficiencies, missing energy, etc.
- Precision tests of the SM
 - Perturbative QCD calculations
 - Constraints on PDF
 - Electroweak sector

$$\sigma(pp \rightarrow O + X) = \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \overset{\wedge}{\sigma} \overset{\times}{ab \rightarrow O} \overset{\wedge}{(s, \mu_F, \mu_R)}_2$$

Experimental setup

- 50ns collisions in July -> 43 pb⁻¹ integrated luminosity, total cross section measurements
 - 4.8% uncertainty in the luminosity
 - 2.6% uncertainty from VDM scan
 - 4.0% uncertainty due to the luminometer linearity and stability
- 25 ns collisions -> Include the differential measurements
 - 2.7% uncertainty in the luminosity

Inclusive Z cross section at $\sqrt{s} = 13 \text{ TeV}$

- Electron and muon results combined assuming lepton universality
- Good agreement with SM NNLO [QCD] prediction [FEWZ]
- Z->µµ update with 2015 dataset: 1870 ± 2 (stat) ± 35 (syst) ± 51 (lumi) pb

Inclusive W cross section at $\sqrt{s} = 13 \text{ TeV}$

- Fit to the missing energy distribution to extract the signal
- Missing energy resolution is crucial
 - Pileup mitigation

Cross section ratios

- "Cancellation" of the systematic uncertainties
 - No luminosity uncertainty
 - Partial cancelation of theory and experimental uncertainties
- Constraints on PFDs

Lepton universality

- Ratios of the W and Z total inclusive cross sections in electron and muon channels
 - Check of the lepton universality

CMS-PAS-SMP-15-004

Results compatible with SM prediction

DIFFERENTIAL RESULTS

Z boson p_T modeling

- Transverse momentum distribution of Z boson
 - BSM searches rely on understanding of the Z background
- Dark matter searches
 - Find signal on the MET tails
 - We have to deal with Z->vv background

Differential cross sections at $\sqrt{s} = 13$ TeV

- Transverse momentum distribution of Z boson in di-muon channel
 - Compared to AMC@NLO, POWHEG, and FEWZ predictions
 - Missing NLO electroweak corrections for AMC@NLO and POWHEG
 - FEWZ calculations are not resummed (soft gluon resummation)

Systematic uncertainties

- Summary of systematic uncertainties for differential cross section
 - Sensitivity not good enough yet to separate the effects of EWK corrections

 Unfolding uncertainty (model dependence) dominant in some regions of phase space

6/16/16

Phi Star (ϕ^*) at $\sqrt{s} = 13$ TeV

- ϕ^* defined exclusively by the lepton directions
 - Less susceptible to the resolution effects
 - Sensitive to the same effects as Q_T
 - Reduced systematic uncertainties

Phi Star (ϕ^*) at $\sqrt{s} = 13$ TeV

- φ^{*} distribution of Z boson
- AMC@NLO and Powheg predictions are normalized to NLO cross section
- PDF and scale uncertainties are shown for the predictions

Z/γ^* +jet and γ +jet ratio at $\sqrt{s} = 8$ TeV

- Differential cross section ratio as a function of boson \boldsymbol{p}_{T}
 - Compared to Madgraph and BLACKHAT (QCD-NLO) calculation
- Inclusion of EW corrections results in better agreement

Differential cross sections at $\sqrt{s} = 8$ TeV

- Transverse momentum distribution of W boson for muon channel
 - Special low pileup run at √s = 8 TeV
 - Compared to ResBos, POWHEG, and FEWZ predictions

Differential ratios at $\sqrt{s} = 8$ TeV

- Z/W differential cross section ratio for muon channel
 - W⁻/W⁺ ratio in backup
 - Compared to ResBos, POWHEG, and FEWZ predictions

W charge asymmetry at $\sqrt{s} = 8 \text{ TeV}$

- Differential cross section and muon charge asymmetry
- Constraints on the valence and sea quark distributions

Rapidity of Z boson at $\sqrt{s} = 13$ TeV

• Rapidity distribution of Z boson

A_{FB} at $\sqrt{s} = 8 \text{ TeV}$

- Vector and axial-vector couplings
- Extract the effective weak mixing angle $\sin^2 \theta^{e\!f\!f}(m_Z)$
- Measurement extended to larger rapidity (|y|=5)
 - Electrons in forward calorimeter

Collins-Soper frame

Summary

- Large and successful program at LHC Run 1 completed and being finalized
- New opportunities with CMS at at Vs= 13 TeV
- Preliminary measurements of inclusive and fiducial W and Z cross sections and ratios
 - Already achieved excellent accuracy
 - Precise tests with ratios
- Z p_T spectra measurements at 13 TeV
- Many more results in the pipeline

BACKUP

Fiducial region

QCD and EWK calculations

- State of the art tools
- NLO calculations matched to parton showers
 - AMC@NLO, POWHEG, SHERPA
- NNLO fixed order calculations
 - FEWZ, DYNNLO
 - Partonic differential cross section
- NNLL analytic ressumation at low $\ensuremath{p_{\text{T}}}$
 - RESBOS, DYqT
 - Matched with NNLO calculations
- EWK corrections
 - Horace, FEWZ

MET modeling

- Recoil calibrated MET
 - Measure response and resolution of the hadronic recoil against W boson using Z events
 - Parameterize parallel (u_1) and perpendicular (u_2) components of the recoil as function of boson p_{T}

43 pb⁻¹ (13 TeV)

CMS Preliminary

100

150

∉_⊤ [GeV]

24

data

W¯→e¯⊽ EWK+tt QCD

Use the data driven recoil model to correct W simulation

PUPPI Algorithm

- Missing energy resolution is crucial for the W signal extraction PUPPI algorithm
- Pileup mitigation
- Single particle level
- Compute weight per particle
- Discard small-weight particles
- Calculate MET as the negative weighted sum of particles

Courtesy of P. Harris

PUPPI MET performance

- New method with respect to Run 1 for pileup mitigation
 - Weight per particle to discriminate PU

Missing Energy

• Missing energy resolution is crucial for the W signal extraction

W->µv yields

W->ev yields

Z yields

Total cross sections summary

Channel		$\sigma \times \mathcal{B}$ [pb] (total)	NNLO [pb]		
	$e^+\nu$	$11390 \pm 90 (\text{stat}) \pm 340 (\text{syst}) \pm 550 (\text{lumi})$			
W^+	$\mu^+\nu$	$11350 \pm 60 ({ m stat}) \pm 320 ({ m syst}) \pm 550 ({ m lumi})$	11330^{+320}_{-270}		
	$\ell^+ \nu$	$11370 \pm 50 ({ m stat}) \pm 230 ({ m syst}) \pm 550 ({ m lumi})$			
	$e^{-\nu}$	$8680 \pm 80 (\text{stat}) \pm 250 (\text{syst}) \pm 420 (\text{lumi})$			
W-	$\mu^-\nu$	$8510 \pm 60 ({ m stat}) \pm 210 ({ m syst}) \pm 410 ({ m lumi})$	8370^{+240}_{-210}		
	$\ell^- \nu$	$8580\pm50(\mathrm{stat})\pm160(\mathrm{syst})\pm410(\mathrm{lumi})$	210		
	eν	$20070 \pm 120 (\text{stat}) \pm 570 (\text{syst}) \pm 960 (\text{lumi})$			
W	μν	$19870 \pm 80 ({ m stat}) \pm 460 ({ m syst}) \pm 950 ({ m lumi})$	19700^{+560}_{-470}		
	$\ell \nu$	$19950 \pm 70 (\text{stat}) \pm 360 (\text{syst}) \pm 960 (\text{lumi})$			
	e ⁺ e ⁻	$1920 \pm 20 (\text{stat}) \pm 60 (\text{syst}) \pm 90 (\text{lumi})$			
Ζ	$\mu^+\mu^-$	$1900 \pm 10 (\text{stat}) \pm 50 (\text{syst}) \pm 90 (\text{lumi})$	1870^{+50}_{-40}		
	$\ell^+\ell^-$	$1910 \pm 10 (\mathrm{stat}) \pm 40 (\mathrm{syst}) \pm 90 (\mathrm{lumi})$	10		
Quantity		Ratio (total)	NNLO		
<i>R</i> _{W⁺/W⁻}	e	1.313 ± 0.016 (stat) ± 0.028 (syst)			
	μ	1.334 ± 0.011 (stat) ± 0.031 (syst)	$1.354^{+0.011}_{-0.012}$		
	l	1.323 ± 0.010 (stat) ± 0.021 (syst)	0.012		
	e	$5.94 \pm 0.07 (\text{stat}) \pm 0.16 (\text{syst})$			
$R_{W^+/Z}$	μ	5.98 ± 0.05 (stat) ± 0.14 (syst)	$6.06^{+0.04}_{-0.05}$		
	ℓ	5.96 ± 0.04 (stat) ± 0.10 (syst)	0.00		
$R_{W^-/Z}$	e	$4.52 \pm 0.06 (\text{stat}) \pm 0.12 (\text{syst})$			
	μ	4.49 ± 0.04 (stat) ± 0.10 (syst)	$4.48^{+0.03}_{-0.02}$		
	l	4.50 ± 0.03 (stat) ± 0.08 (syst)	0.02		
R _{W/Z}	e	$10.46 \pm 0.11 (\text{stat}) \pm 0.26 (\text{syst})$			
	μ	$10.47 \pm 0.08 ({ m stat}) \pm 0.20 ({ m syst})$	$10.55^{+0.07}_{-0.06}$		
	l	10.46 ± 0.06 (stat) ± 0.16 (syst)	5.00		

6/16/16

Differential cross sections

- Transverse momentum of the negatively charged muon
- AMC@NLO and Powheg predictions are normalized to NLO cross section
- PDF and scale uncertainties are shown for the predictions

Differential cross sections

- Transverse momentum of the positively charged muon
- AMC@NLO and Powheg predictions are normalized to NLO cross section
- PDF and scale uncertainties are shown for the predictions

Differential cross sections at $\sqrt{s} = 8$ TeV

- Transverse momentum distribution of Z boson in di-muon channel
 - Compared to ResBos, POWHEG, and FEWZ predictions
 - FEWZ calculations are not resummed (soft gluon resummation)

Differential ratios at $\sqrt{s} = 8$ TeV

- W⁻/W⁺ differential cross section ratio for muon channel
 - Compared to ResBos, POWHEG, and FEWZ predictions

Differential cross sections at $\sqrt{s} = 8$ TeV

- Transverse momentum distribution of W boson for electron channel
 - Special low pileup run at √s = 8 TeV
 - Compared to ResBos, POWHEG, and FEWZ predictions

Rapidity of Z boson at $\sqrt{s} = 13$ TeV

• Rapidity distribution of Z boson

CMS-PAS-SMP-15-011

W charge asymmetry at $\sqrt{s} = 8 \text{ TeV}$

- Differential cross section and muon charge asymmetry
- Constraints on the valence and sea quark distributions

Systematic uncertainties (muons)

	TAT	T 4 7	747	TAT /TAT	7	147 / 77	141 / 17	111/17
Source		W^{-}	W	W^+/W^-	Z	W^+/Z	W^{-}/Z	W/Z
Lepton charge, reco. & id. [%]	1.9	1.7	1.8	0.3	2.2	0.6	0.6	0.6
Bkg. subtraction / modeling [%]	0.6	0.6	0.6	0.4	0.6	0.8	0.8	0.8
$E_{\rm T}^{\rm miss}$ scale and resolution		shape					shape	
Muon scale and resolution	shape				NA		shape	
Total experimental [%]	2.0	1.8	1.9	0.5	2.3	1.1	1.1	1.1
Theoretical Uncertainty [%]	2.0	1.7	1.3	2.3	1.5	2.0	1.9	1.6
Lumi [%]	4.8	4.8	4.8	NA	4.8	NA	NA	NA
Total [%]	5.6	5.4	5.3	2.3	5.5	2.3	2.2	1.9

- 50 ns results
- Dominated by the current luminosity uncertainty
 - Cancels in the ratios
- Experimental and theoretical uncertainties are comparable

Systematic uncertainties (muons)

Lepton reco. & id. [%]	1.3
Bkg. subtraction / modeling [%]	0.1
Total experimental [%]	1.3
PDF [%]	0.7
QCD corrections [%]	1.1
EW corrections [%]	0.4
Theoretical Uncertainty [%]	1.4
Lumi [%]	2.7
Total [%]	3.3

Total data yield	1343017 ± 1160
Background yield	7050 ± 1330
Dressed acceptance	0.372 ± 0.005
Naked acceptance	0.366 ± 0.005
Efficiency	$0.85 {\pm} 0.01$

- 25ns Z->µµ results
 - Full dataset, 2.3 fb⁻¹
 - SMP-15-011
- Reduced experimental and luminosity uncertainties

Systematic uncertainties (electrons)

Source	W^+	W^-	W	W^+/W^-	Ζ	W^+/Z	W^-/Z	W/Z
Lepton charge, reco. & id. [%]	2.1	2.0	2.1	0.6	2.5	1.2	1.0	1.0
Bkg. subtraction / modeling [%]	1.4	1.4	1.4	0.9	0.6	1.5	1.5	1.5
$E_{\rm T}^{\rm miss}$ scale and resolution		shape					shape	
Electron scale and resolution		shape			NA		shape	
Total experimental [%]	2.5	2.5	2.5	1.1	2.6	1.9	1.8	1.8
Theoretical uncertainty [%]	1.6	1.4	1.4	1.9	1.6	1.9	1.9	1.7
Lumi [%]	4.8	4.8	4.8	NA	4.8	NA	NA	NA
Total [%]	5.6	5.6	5.6	2.1	5.7	2.7	2.6	2.5

- Dominated by the current luminosity uncertainty
 - Cancels in the ratios
- Experimental and theoretical uncertainties are comparable

Theory uncertainties

- Higher order QCD corrections [NNLO] and resummation
 - Compare ResBos/DYRES [NNLO and NNLL] with the baseline acceptance
- PDF uncertainties
 - Uncertainties due to error PDF sets and α_{s}
- Missing QCD corrections beyond NNLO
 - Use FEWZ 3.1 to estimate the uncertainty by varying the factorization and renormalization scales: $\mu_R = \mu_F = \{M, 2M, M/2\}$
- FSR modeling and higher order EWK corrections
 - Use Horace for FSR modeling and compare to Pythia 8 FSR modeling
 - Compare Horace with full NLO EWK corrections to Horace with just FSR correction

Total inclusive cross sections

- Electron and muon results combined assuming lepton universality
- Good agreement with SM NNLO prediction
- Theoretical predictions at NNLO from FEWZ using NNPDF3.0 PDF set
 - Scale and PDF uncertainties are included
- Z-> $\mu\mu$ update with full dataset: 1870 ± 2 (stat) ± 35 (syst) ± 51 (lumi) pb

Fiducial inclusive cross sections

- No theoretical uncertainties on the measurement
- Good agreement with SM predictions

Muons

Electrons

Fiducial inclusive cross sections

• Good agreement with SM predictions with different PDF predictions

Muons

Electrons

Total fiducial cross sections

- Measured fiducial cross sections:
 - Dressed: 695 ± 1 (stat) ± 9 (syst) ± 19 (lumi) ± 2 (FSR) pb
 - Naked: 684 ± 1 (stat) ± 9 (syst) ± 19 (lumi) pb
- Fiducial cross section prediction: $\sigma x A$
 - σ : inclusive total cross section from FEWZ
 - A: acceptance from AMC@NLO
 - Dressed: 695 ± 23 pb
 - Naked: 684 ± 23 pb
- FEWZ fiducial cross section
 - Dressed: 712 ± 16 (PDF) pb
 - Naked: 700 ± 16 (PDF) pb