Squark & gluino searches in leptonic channels with CMS

Artur Lobanov
DESY Hamburg
on behalf of the CMS Collaboration

16 June 2016
4th Large Hadron Collider Physics Conference
Lund, Sweden
Strong SUSY after LHC Run1

Interpretation within simplified models:

> Gluinos excluded in various searches > 1400 (700) GeV for light (heavy) neutralinos

> Squarks excluded above 900 (700) GeV for light (heavy) neutralinos

CMS Preliminary

\[\tilde{g} \rightarrow t \bar{t} \tilde{\chi}^0_1 \]
Strong SUSY at the LHC with \(\sqrt{s} = 13 \) TeV

- Strong SUSY profits largely from increased \(\sqrt{s} \)
- Gluino with largest absolute xsec and also largest gain wrt 8TeV for excluded \(m_{\text{gluino}} \)
- In this talk: gluino/squark searches at CMS using 2015 data at \(\sqrt{s} = 13 \) TeV
- See Eric’s talk for 3rd gen SUSY in the afternoon

\[\sigma_{\text{NLO+NLL}} \]

\[[\text{pb}] \]

\[13 \text{ TeV} \]

\[8 \text{ TeV} \]

\[m_x [\text{GeV}] \]

\[400 \]

\[600 \]

\[800 \]

\[1000 \]

\[1200 \]

\[1400 \]

\[1600 \]

\[1800 \]

\[\times 10 \]

\[\times 30 \]

\[\text{Xsec source} \]
Leptons in gluino production:

- W from top quarks
- W/Z from charginos

Leptonic channels:

- $=1\ell$ — high BR, inclusive
- $\geq2\ell$ — moderate BR, low SM
- $\geq3\ell$ — low BR and ~no SM

Simplified Model: $T1tttt$

$T5qqqqVV, V = W/Z$

(various EWKino mass splittings)
Leptonic gluino searches at CMS

- Leptons in gluino production:
 - W from top quarks
 - W/Z from charginos

- Leptonic channels:
 - 1ℓ — high BR, inclusive
 - $\geq 2\ell$ — moderate BR, low SM
 - $\geq 3\ell$ — low BR and ~no SM

*All-hadronic searches — see [Talk by Tai](#) from Tuesday

> SUS-15-004 (Razor*)
> SUS-15-006 ($\Delta\phi$)
> SUS-15-007 (M_J)
> SUS-16-011 (Soft)
> SUS-15-008 (SS)
> SUS-15-011 (OS)
> SUS-16-003 ($\geq 3\ell$)
Targets T5qqqqWW & T1tttt with single isolated e/µ p_T > 25 GeV

Preselection:
> L_T = MET + p_T (lepton) > 250 GeV
> n_jets ≥ 5 (p_T > 30 GeV)
> H_T = ∑ p_T (jets) > 500 GeV

Signal discrimination
> ΔΦ(W,ℓ) — azimuthal angle between lepton and reconstructed W(MET+ℓ)

b-jet multiplicity (CSVM)

Data/Pred. 0.5 1 1.5 2 2.5 3 3.5 < Events / 0.1 >

n_b = 0

n_b ≥ 1
Multi-bin search with ABCD-like background prediction based on $\Delta \phi$ & n_{jets}

- Exclusive search bins in H_T, L_T, n_j, n_b
- Total regions: 13 (30) for $n_{\text{btags}} = 0$ (≥ 1)

Data-driven background estimation
- High-to-low $\Delta \phi$ transfer factors from low n_j data sidebands (R_{CS})
- Residual corrections between n_j bands from MC
- QCD contribution estimated from fake-enriched control sample

\rightarrow good agreement with observation
Targets T1tttt with single isolated e/μ p_T > 20 GeV

Preselection:
> n_{jets} \geq 6 (p_T > 30 \text{ GeV}), \ n_b \geq 1
> H_T = \sum p_T (jets) > 500 \text{ GeV}
> \text{MET} > 200 \text{ GeV}

Signal discrimination
> m_T: from MET and lepton
> M_J: sum of large-R(1.2) jet masses

tt+jets background dominates \rightarrow\suppressedby M_J cut
Multi-bin search with ABCD-like background prediction

> Exclusive search bins in MET, n_j and n_b
> Total regions: 10

Data-driven background prediction
> m_T and M_J not correlated
> Low-to-high m_T transfer factors
> Residual corrections between M_J regions from MC
> Prediction from fit in each bin

\rightarrow agrees with observation
Preselection:

- No second lepton/isolated track
- \(H_T = \Sigma p_T \) (jets) > 200 GeV
- \(\text{MET} > 200 \) GeV
- \(|\text{MET} - H_T| < 0.5 \) MET
- \(n_{\text{jets}} \geq 1 \)
- \(m_T > 20 \) GeV

Search bins in \(H_T, \text{MET}, m_T, n_{\text{jets}}, n_{\text{btags}} \)

Background estimation in categories:

- \(1\ell \) — from hard muon, low MET CR
- \(2\ell \) — from \(2\ell \) control region
- Fakes from fake-enriched sample

\(\rightarrow \) agrees with observation

More details in [Giovanni’s talk](#)
Targets various scenarios with two same-sign e/µ

Preselection:
> SS e/µ with $p_T > 15/10$ GeV
> Any $m_{e\mu} > 12$ GeV and outside Z
> $n_{jets} \geq 2$ ($p_T > 40$ GeV)
> $H_T = \sum p_T$ (jets) > 500 GeV
> MET > 50 GeV

Background estimation in categories:
> Nonprompt from loose leptons in data
> Same-sign 2\ell SM processes from MC
> Charge misidentified from OS data
—> agrees with observation

Signal discrimination:
> $\min(m_T)$ of two leptons

Search categories based on p_T of leptons and binned in m_T, H_T, MET, n_{jets}, n_{btags}
SUS-16-003 (multileptons)

Targets T1tttt & T5qqqqVV with multileptons

Preselection:
> 3 e/μ with p_T > 20/15/10 GeV
> OS SF m_ℓℓ > 12 GeV
> n_jets ≥ 2 (p_T > 30 GeV)
> H_T = \Sigma p_T (jets) > 60 GeV
> MET > 50 GeV

Search categories:
> m_ℓℓ on/off-Z peak
> binned in H_T, MET, n_b

Background estimation in categories:
> Nonprompt from loose leptons in data
> Dibosons from normalised MC
> Rare SM processes from MC
→ agrees with observation

Data/pred
Limit summary: T1tttt

- 1ℓ analyses most sensitive and comparable to full hadronic
- Significant extension beyond 8TeV results

Compressed region well covered by 1ℓ-Δφ and SS analyses due to low MET cut

Light neutralino region pushed by 1ℓ searches with high n_jets
Limit summary: T5qqqqVV

- 1\ell analyses most sensitive and comparable to full hadronic
- Significant extension beyond 8TeV results
- Two mass splittings probed

pp $\rightarrow \tilde{g}\tilde{g}$, $\tilde{g} \rightarrow q\bar{q}V\tilde{\chi}^0_1$ Moriond 2016

CMS Preliminary

- $V = W$: SUS-15-006, 1-lep ($\Delta\phi$), 2.3 fb$^{-1}$ (13 TeV)
- $V = W$: SUS-15-008, 2-lep (SS), 2.2 fb$^{-1}$ (13 TeV)
- $V = W/Z$: SUS-16-003, 3-lep, 2.3 fb$^{-1}$ (13 TeV)

$m_{\tilde{\chi}_1^0} = 0.5(m_{\tilde{g}} + m_{\chi_1}$)

CMS Preliminary

pp $\rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}V\tilde{\chi}^0_1$

2.3 fb$^{-1}$ (13 TeV)

CMS-PAS-SUS-16-011
Preselection:
> OS same-flavour e/µ with $p_T > 20$ GeV
> $n_{jets} \geq 2$ ($p_T > 35$ GeV)
> MET > 100 GeV

Background estimation in categories:
> flavour-symmetric from OF control region
> Drell-Yan-like from data MET templates

\rightarrow no excess found at 13TeV!

Search categories for edge/on-Z binned in:
> MET, H_T, n_{jets}, n_{btags} and $m_{\ell\ell}$
> including ATLAS-like SR (with 8TeV excess)
Summary

- Gluino sensitivity strongly enhanced with 13 TeV
 - At least 30 times larger x-sec wrt 8 TeV
 - SM backgrounds increase < 4x
- Leptonic channels complement hadronic searches performed by CMS
 - less background, good acceptance
 - high discovery & measurement sensitivity
- No deviations from expectations in 2015 data
 - → strong limits on simplified SUSY models surpassing 8 TeV results significantly
 - → CMS ready for SUSY searches in 2016 data!
BACKUP
> With/without b-tag analyses allow two interpretations

CMS Preliminary 2.3 fb⁻¹ (13 TeV)

T1tttt

- Observed ± 1σ_{theory}
- Expected ± 1σ_{experiment}

pp → g g~, g g→ t t χ⁻₁
NLO+NLL exclusion

T5qqqqWW

- Observed ± 1σ_{theory}
- Expected ± 1σ_{experiment}

pp → g g~, g g→ q q' W⁺ χ⁺₁
NLO+NLL exclusion

m₀ [GeV] = 0.5(m₉ + mₐ)
Also interpreted with intermediate stop of top mass 175 GeV

CMS

NLO+NLL exclusion

pp → ĝ ĝ, ĝ → t ĭ \tilde{χ}_0^0

Observed ± 1 \sigma_{\text{theory}}

Expected ± 1 \sigma_{\text{experiment}}

\begin{align*}
\text{T1tttt} & \quad m_\tilde{g} \text{ [GeV]} \\
\text{T5tttt}, m_{\text{stop}} = 175\text{GeV} & \quad m_\tilde{g} \text{ [GeV]}
\end{align*}
SUS-16-003 (multileptons)

CMS Preliminary 2.3 fb⁻¹ (13 TeV)

pp → gb, ĝ → tbb̄, NLO+NLL exclusion

Observed ± 1 σ_{theory}

Expected ± 1 σ_{experiment}

95% C.L. upper limit on cross section [pb]

m_{χ}\, [GeV]

m_{b}\, [GeV]

m_{g}\, [GeV]
SUS-15-011 (opposite-sign 2ℓ)

ATLAS-like SR

CMS 8TeV excess SR

2.3 fb⁻¹ (13 TeV)

Data
E_{miss} templates
FS background
Other SM

Σ p_{T(lep)} + H_{T} > 600 GeV
Δφ(E_{miss}, jet) > 0.4
N_{miss} ≥ 2

2.2 fb⁻¹ (13 TeV)

Central signal region
Data
Total backgrounds
Drell-Yan
Total unc.
Scaled 8 TeV signal fit:
Σ_m = 300 GeV hypothesis
Σ_m = 500 GeV hypothesis
Σ_m = 700 GeV hypothesis

CMS-PAS-SUS-15-011

CMS
2.3 fb⁻¹ (13 TeV)

pp → g̅g → ℓ⁺ℓ⁻, Z → Z_{2b} → Z_{1b} + Z_{1b}, m_{b} = 1 GeV

NLO+NLL exclusion
Expected limit, ± 1σ_{exp.}
Observed limit, ± 1σ_{theory}
95% CL upper limit on σ [pb]

2.3 fb⁻¹ (13 TeV)

pp → g̅g → ℓ⁺ℓ⁻, Z → Z_{2b} → Z_{1b} + Z_{1b}, m_{b} = 100 GeV

m_{b} = 0.5(m_{Z1} + m_{Z2}) NLO+NLL exclusion
Expected limit, ± 1σ_{exp.}
Observed limit, ± 1σ_{theory}
95% CL upper limit on σ [pb]