# Third generation SUSY searches in CMS

Eric Chabert
On behalf the CMS collaboration







### Last talk on the SUSY 3G

#### **SUSY session on Tuesday:**

- Squark/gluino searches in hadronic channels with CMS (SAKUMA, Tai)
- pMSSM studies with ATLAS and CMS (FAWCETT, William James)

#### **SUSY plenary session this morning:**

- Inclusive searches for gluinos and squarks @LHC (HODGKINSON, Mark)
- SUSY searches in lepton and photon final states
   @LHC (SCHULTE, Jan-Frederik)
- Third generation SUSY searches at the LHC (HOPKINS, Walter)

#### SUSY plenary session this morning:

 Squark/gluino in leptonic channels with CMS (LOBANOV, Artur)

# Last talk on the SUSY 3G

I'm the last one (3)
I should have chosen a experiment whose name starts with a A not a C ....

#### **SUSY session on Tuesday:**

- Squark/gluino searches in hadronic channels with CMS (SAKUMA, Tai)
- pMSSM studies with ATLAS and CMS (FAWCETT, William James)

#### SUSY plenary session this morning:

- Inclusive searches for gluinos and squarks @LHC (HODGKINSON, Mark)
- SUSY searches in lepton and photon final states
   @LHC (SCHULTE, Jan-Frederik)
- Third generation SUSY searches at the LHC (HOPKINS, Walter)

#### SUSY plenary session this morning:

 Squark/gluino in leptonic channels with CMS (LOBANOV, Artur)



How could I be original ??

### What's in?





# Physic processes considered

Consider Simplified Models Spectra with a limited

number of sparticles

Production modes of stop/sbottom

- Direct pair production
- Gluino induced pair production



Example:

# Physic processes considered

### Stop searches







→ Top decays lead to 3 channels: 0, 1, 2 leptons

### Sbottom searches





Relevant in compressed spectra



# Stop searches: fully hadronic

Top  $p_T$  OR  $\Delta M(\tilde{t}, \tilde{\chi_I}^{\theta})$ 

### High Efficiency Top Tagging (HPTT)

#### Resolved topology



- Use AK4 jets
- Combination of 3 jets with  $\Delta R=1.5$
- Constraints on 2- and 3-body masses (W/top)
- Sensitivity to boosted topology:
  - 1- and 2-jets combination (W/top appearing as a single jet: mass constraints)

Optimized for low  $\Delta m$ , and mixed scenarios with T2tb decays

### High Purity **Top Tagging** (HPTT)

#### **Boosted topology**



Use Ak8 jets – CMS Top Tagging algo:

- At least 3 subjets
- Jet mass: [140-250] GeV
- MinMass(3 highest p<sub>⊤</sub> subjets)>50 GeV
- p<sub>T</sub>>400 GeV

More efficient for T2tt models with medium and large  $\Delta m$ 

# Stop searches: fully hadronic

Top p<sub>T</sub>

OR

 $\Delta M(\tilde{\mathsf{t}}, \tilde{\chi_I^{\theta}})$ 

### High Efficiency Top Tagging (HPTT)

Performances measured in data

- Tag-and-probe method in tt-1l enriched sample
- MC/Data agreement: flat 5% uncertainty



### High Purity Top Tagging (HPTT)

Performances measured in data

- Efficiency measured with tt-1µ enriched sample: 10% uncertainty
- Fake rate measured a Control Sample with H<sub>T</sub>>1 TeV & MET>200 GeV:
  - 30% overestimation in MC (corrected)
  - 10% uncertainty

[suppress QCD]

[suppress EW]

[suppress 1| processes]

# Stop searches: fully hadronic

#### Selection

- $N_i \ge 4$  (5) ( $p_T \ge 30$  (20) GeV)
- $N_{b} \ge 1 (N_{b}^{l} \ge 2)$
- Isolated Lepton veto  $(e/\mu/\tau_h)$
- Min  $\Delta \phi$  (j,MET) > 0.5 (among 3 or 4 leading jets) [suppress QCD]
- MET>200(250) GeV [suppress tt] (+ HT > 500 GeV)
- Introduce discriminating variables

$$M_{\rm T}({\rm b}_{1,2},\not\!\!E_{\rm T}) \equiv {\rm Min}[M_{\rm T}({\rm b}_1,\not\!\!E_{\rm T}),M_{\rm T}({\rm b}_1,\not\!\!E_{\rm T})]$$

$$M_{\text{T2}} \equiv \min_{\vec{q}_{\text{T}}^{(1)} + \vec{q}_{\text{T}}^{(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[ \max\{m_{\text{T}}^{2}(\vec{p}_{\text{T}}^{(1)}; m_{\text{p}}^{(1)}, \vec{q}_{\text{T}}^{(1)}; m_{\tilde{\chi}_{1}^{0}}), m_{\text{T}}^{2}(\vec{p}_{\text{T}}^{(2)}; m_{\text{p}}^{(2)}, \vec{q}_{\text{T}}^{(2)}; m_{\tilde{\chi}_{1}^{0}}^{\bullet}) \} \right]$$

MET is coming from  $\tilde{\chi}_{I}^{\theta}$ 

Estimator of stop mass for signal

# Stop searches: fully hadronic

Top  $p_T$  OR  $\Delta M(\tilde{t}, \tilde{\chi}_I^{\theta})$ 

High Efficiency Top Tagging (HPTT)

### High Purity Top Tagging (HPTT)

#### **Binning:**

- N<sub>top</sub>, N<sub>b</sub>, MET, M<sub>T2</sub>
- 37 exclusives search regions



#### **Binning:**

- N<sub>top</sub>, N<sub>b</sub>, N<sub>jets</sub>, M<sub>T</sub>(b,MET)
- 50 exclusives search regions



# Stop searches: fully hadronic

#### **Generalities:**

- Major backgrounds estimated from orthogonal control regions (CR)
  - Define to be as close as possible to the signal regions (~ same binning)
  - **Integration over some variables** done to increase the statistical power of the estimation when no dependencies are observed
  - Make use of Transfer Factors (Control -> Signal region)
- Rare backgrounds taken from simulation
  - reweighted to the most accurate x-section and to known mis-modeling of the simulation (ex: PU)
  - all uncertainties (theory experimental) are taken into account
- Signal is taken from simulation in similar way to the MC background (reweighting + uncertainties)
- Background estimation strategy for fully hadronic stop searches
  - **Lost lepton background:** from 1l CR. MT < 100 GeV.
  - **Z\rightarrowUU:** Use an enriched 2l CR as well as a  $\gamma$ +jets CR
  - **Multi-jet background:** estimated from a CR defined by inverting the cut on  $\Delta \phi$  (jets, MET)
  - ttZ: from simulation

Introduction Conclusion Stop searches Sbottom search

### SUS-16-007

# Stop search: one lepton

#### Selection

- 1 lepton (e/ $\mu$ )
- MET > 250 GeV
- At least one b-tagged jet (against EWK)
- $M_T > 150 \text{ GeV}$  (against W+jets & tt  $\rightarrow 11$ )
- No extra e/ $\mu$ / $\tau$  (against tt  $\rightarrow$  2l)

### **Binning**

- $N_{iet}$  (2, 3 or  $\geq$  4 jets)
- MET bins
- MT2W [</> 200 GeV]

$$M_{\text{T2}}^{\text{W}} = \min \left\{ m_y \text{ consistent with } \left[ p_1^2 = 0, \right. \right. \\ \left. (p_1 + p_\ell)^2 = p_2^2 = M_W, \vec{p}_{\text{T}}^{1} + \vec{p}_{\text{T}}^{2} = \vec{E}_{\text{T}}^{\text{miss}}, \right. \\ \left. (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2, \right] \right\}$$





SUS-16-007

# Stop search: one lepton

### 3- >=4 jets selection





### SUS-16-002

### Stop search: one lepton

### 2 jets

Soft /invisible decay

Small  $\Delta M(\tilde{\chi_I}^+, \tilde{\chi_I}^0)$ 

### 3 jets

**Boosted hadronic W** 

V.Large  $\Delta M(\tilde{t}, \tilde{\chi_I}^{\theta})$ 

### ≥ 4 jets

MT2W used to discriminate

Small and high  $\Delta M(\tilde{t}, \tilde{\chi_I}^{\theta})$ 



E<sub>T</sub><sup>miss</sup> [GeV] 16

SUS-16-007

# Stop search: one lepton

### Background estimation

- Lost lepton: taken from a 2l CR
- W+Jets: estimated from 0 b-tag CR
- Minor backgrounds: from simulation





2.3 fb<sup>-1</sup> (13 TeV)

# Stop searches: Combination



First 13 TeV results (2.3 fb<sup>-1</sup>) already supersede the limits at 8 TeV (19 fb<sup>-1</sup>)



SUS-16-001

### Sbottom search

Selection: veto  $\ell$  or isolated track, two or three jets with p<sub>T</sub>>50 GeV, MET>250 GeV (MET trigger),  $\Delta \phi(j_{123}, MET) > 0.4$ 

#### Non-compressed

#### **Selection:**

- $p_T(j1)>100 \text{ GeV}, p_T(j2)>75 \text{ GeV}$
- both are b-tagged,
- H<sub>T</sub>>200 GeV, m<sub>CT</sub>>250 GeV



#### Compressed

#### Selection:

- $p_{\tau}(j1)>250 \text{ GeV}$  NOT b-tagged
- Require a ISR jet to boost the system
- $p_T(j2)>60 \text{ GeV}$ , **b-tagged**
- Δφ(j1,MET)>2.3



SUS-16-001

### Sbottom search

### Non-compressed

#### **Binning:** H<sub>T</sub> and m<sub>CT</sub>

$$\begin{array}{lcl} m_{\mathrm{CT}}^2(j_1,j_2) & = & [E_{\mathrm{T}}(j_1) + E_{\mathrm{T}}(j_2)]^2 - [\mathbf{p}_{\mathrm{T}}(j_1) - \mathbf{p}_{\mathrm{T}}(j_2)]^2 \\ & = & 2p_{\mathrm{T}}(j_1)p_{\mathrm{T}}(j_2)(1 + \cos\Delta\phi(j_1,j_2)), \end{array}$$



### Compressed

Binning: N<sub>b-jets</sub>, MET



SUS-16-001

# Sbottom search

Events

#### Main backgrounds estimation:

≻ Z<del>→</del>ບບ:

from a Z $\rightarrow$  µµ enriched sample µ's are removed to recompute all the kinematic variables

Lost lepton backgrounds:

from a enriched  $e/\mu$  single control sample

QCD multijets:

from control region defined by the inversion of the  $\Delta \phi(j,MET)$  cut and at lower MET values



data/Pred

### Sbottom searches: exclusion limits



### Stop limit interpretation CMS Preliminary, 2.3 fb<sup>-1</sup>, √s = 13 TeV [GeV] upper limit on cross section (pb $pp \rightarrow \tilde{t} \ \tilde{t}, \ \tilde{t} \rightarrow c \ \tilde{\chi}^0_* \ NLO+NLL \ exclusion$ 300 250 200 150 100 m; [GeV] BR=100%

### Conclusion

- > Targeted searches for third generation squarks
  - Covering broad range of signatures with dedicated tools
  - Use dedicated approaches to cover the different kinematics (compressed, moderate, boosted): top-taggers, specific variables
- ➤ No evidence yet, results interpreted in terms of limits in SMS
- > Stop searches with 2015 data beginning to surpass 8 TeV limits  $m_{stop}$  > 800 GeV for low  $m_{LSP}$
- Run2 will boost the reach
  - Focus on compressed scenarios, and Δm ≈ mt
  - Work on isolation, boosted objects, high pileup
  - Expand interpretations



### Future ...

### Diversity is the keyword

we don't know where the SUSY could be (if...) and we should try to cover as much possibilities as we can

# Backup



Stop searches Introduction Sbottom search Conclusion

# Physics motivation

Partial cancelation of the top quark radiative corrections to the Higgs mass -> natural SUSY models



- Stop expected to be "light"
- IF lowest color-charged SUSY particle → highest cross-section
- Link with Dark Matter (DM)
  - In RP-conserved models, LSP is stable. In most of the models it is the neutralino (WIMP candidate)
  - Stop-neutralino co-annihilation could contribute to the relic DM density: favors low mass difference

### Perspectives

As a reminder, these are some simple extrapolation made for Snowmass



#### Sbottom discovery potential



### Material

- Latest results:
  <a href="https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS">https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</a>
- Covered analysis:
  - SUS-16-001
  - SUS-16-002
  - SUS-16-007

### Simulation

- Generations
  - MADGRAPH5: tt, W+jets, Z+jets, gamma+jets [with NNPDF3.0]
  - POWHEGv1.0:
  - MAGRAPH5 AMC@NLO: single top, ttZ, ttW
- PDF: NNPDF3.0
- PS+Hadronization: PYTHIA8.1
- Simulation: GEANT4 based
- Cross-section normalization: (N)NLO+NLL (when possible)
- Monte-Carlo correction
  - Lepton efficiencies (estimated from Z+jets) [param: kinematics]
  - B-tagging efficiencies (di-jets+tt) [param: kinematics & flavor]
  - PileUp reweighing [data/MC ratios]

# Stop search: 8/13 TeV comparison



