

Third generation SUSY searches in ATLAS

Jan Schäffer for the ATLAS Collaboration

Johannes Gutenberg-Universität Mainz

LHCP, 16.6.2016

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

103

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JG<mark>U</mark> 3rd generation searches in ATLAS

Why 3rd generation?

- Scalar top quark very important for solution of hierarchy problem
- Inclusive q̃ searches usually not as sensitive to t̃₁ and b̃₁ as dedicated searches
- Many different decays possible, depending on mass spectrum
- Cross sections for t₁ and b₁ increased much more than backgrounds with respect to Run1

ATLAS searches

- Sbottom $2b + E_T^{miss}$
- 2L Same Sign

1L Stop2L Stop

RPV Stop
 Monojet
 NEW

JG U 3rd generation searches in ATLAS

General information

- Full 2015 dataset: $\sqrt{s} = 13 \text{ TeV}, \int \mathcal{L}dt = 3.2 \text{fb}^{-1}$
- Simplified models
 - \rightarrow 100% branching ratio
- (mostly) R-parity conserving models $\rightarrow E_{\rm T}^{\rm miss}$ from LSPs
- pair production of SUSY particles

Background estimation

- data driven approaches for main backgrounds
- various methods using control regions
 - normalization factors
 - matrix method
 - ABCD method
 - jet smearing

JG U R-parity conserving simplified models

Note: simplification \rightarrow always assume 100% branching ratio

$$\begin{array}{l} \textbf{Sbottom as NLSP} \\ \tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0 \end{array}$$

JG U 8 TeV limits

Stop as NLSP

Stop as NNLSP

Sbottom $2b + E_{T}^{miss}$

- require 2 b tagged jets
- lepton veto
- signal topology depending on $\Delta m = m_{ ilde{b}_1} m_{ ilde{\chi}_1^0}$

SRA High Δm

- high p_T b-jets, high E_T^{miss}
- usage of contransverse mass m_{CT} $m_{\text{CT}}^2 = \left[E_{\text{T}}(b_1) + E_{\text{T}}(b_2) \right]^2 - \left[\vec{p}_{\text{T}}(b_1) - \vec{p}_{\text{T}}(b_2) \right]^2$

■ main background: W/Z + heavy flavor

- dedicated control regions for backgrounds in each signal region
- extract normalization factors
- different lepton requirements than in signal regions
- $Z \rightarrow \ell \ell$: 2 lep, SFOS in Z peak

SRA High Δm

Same-sign dilepton

 analysis presented in detail earlier today in Martina Pagacova's talk: Squark/gluino in leptonic channels with ATLAS

two same sign leptons

b-tagging

main backgrounds:
 fake leptons and tt + V

- two opposite sign leptons
- Z-veto
- $\begin{array}{l} \blacksquare \quad \text{kinematic variable R1 and stransverse mass:} \\ {}^{m_{T2}} = & \min_{\substack{\vec{q}_T^1 + \vec{q}_T^2 = \vec{p}_T^{\text{miss}}}} \left(\max \left[m_T(\vec{p}_T^{\ell_1}, \vec{q}_T^1), m_T(\vec{p}_T^{\ell_2}, \vec{q}_T^2) \right] \right) \\ {}^{R1} = & \frac{E_T^{\text{miss}}}{m_{\text{miss}}} \end{array} \end{array}$
- no b-tagging
- main background: $ZZ \rightarrow \ell\ell\nu\nu$

Control region: ZZ

- invert Z-veto
- R1 cut removes Z+jets events with high m_{T2} → same cut as in SRs

- two signal regions:
 - DF different flavor pair
 - SF same flavor pair
- interpretation in two signal models:

$$egin{aligned} & m_{ ilde{\chi}_1^\pm} = 2 imes m_{ ilde{\chi}_1^0} \ & m_{ ilde{t}_1} - m_{ ilde{\chi}_1^\pm} = 10 \,\, ext{GeV} \end{aligned}$$

1L Stop

arXiv: 1606.03903

• one lepton, at least one b-tagged jet • main kinematic variables $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} \left(1 - \cos(\Delta \Phi(\vec{p}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\ell}))\right)}$ m_{top}^{χ} : best top mass from three jets $am_{\rm T2}$ and $m_{T2}^{\tau} \rightarrow$ variations of $m_{\rm T2}$

• main backgrounds: $t\bar{t}$ and $t\bar{t} + Z(\rightarrow \nu\nu)$

Control region: $t\bar{t} + \gamma$

- $t\bar{t} + \gamma$ and $t\bar{t} + Z$ very similar \rightarrow improves for high p_T^{Boson}
- vectorially add $\vec{p}_{\rm T}^{\gamma}$ to $\vec{p}_{\rm T}^{\rm miss}$
- very high purity

- three overlapping signal regions with increasingly tight cuts
- differentiate between mass differences
- 2.2σ excess in softest region
- limit uses signal region with best expected CLs

J. Schäffer (ATLAS)

 analysis presented in detail in Ruth Pöttgen's talk (Friday, 16:40): Searches for dark matter production with ATLAS (MET+X)

- compressed spectrum
- no leptons
- main backgrounds:
 - Z
 ightarrow
 u
 u and $W
 ightarrow \ell
 u$

RPV Stop: UDD **NEW**

- no leptons, no invisible particles
- at least 4 jets, two pairs with m^{jj} near $m_{\tilde{t}_1}$
- 1 b-tagged jet in each pair of jets
- main background: multijet production
 - completely data driven
 - shape from b-veto region
 - normalization from ABCD method

•
$$\mathcal{A} = \frac{|m_1^{ij} - m_2^{ij}|}{m_1^{ij} + m_2^{ij}}$$

• $\cos(\theta^*) = (\vec{p}_{\tilde{t}^1} + \vec{p}_{\tilde{t}^2}) \cdot \vec{x}_{\text{beam pipe}}$ in CoM frame

1000(0*)

RPV Stop: UDD NEW

final kinematic variable

$$m_{
m avg}=(m_1^{jj}+m_2^{jj})/2$$

signal regions are windows in m_{avg} around each $m_{\tilde{t}_1}$ in region \mathcal{D}

•
$$p_0(m_{\tilde{t}_1} = 350 \text{ GeV}) = 0.07$$

Conclusion

- some analysis already exceed Run1 sensitivity
- no SUSY found so far

Outlook

- 2016 data taking in full operation
- expect $\int \mathcal{L} dt \approx 30 \mathrm{fb}^{-1}$ at the end of the year
- next 3rd generation update at ICHEP
- we will have an interesting year!

Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2016

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫£ dt[fb	Mass limit	$\sqrt{s} = 7,87$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Indusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM}\\ \overline{q}\nu, \overline{q} \rightarrow q_{1}^{2}, \overline{q} \text{compressed})\\ \overline{q}\sigma(M, \text{tipogatino-bino}, \text{NLSP})\\ \overline{G}\sigma(M, \text{tipogatino-bino}, \text{NLSP})\\ \overline{G}\sigma(M, \text{tipogatino}, \text{bino}, \text{bino}$	$\begin{array}{c} 0.3 \ e, \mu/1.2 \ r \\ 0 \\ mono-jet \\ 2 \ e, \mu (off Z) \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1.2 \ r + 0.11 \ \ell \\ 2 \ e, \mu \\ 0 \\ \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	44 980 697 4 810 667 25 087 25 087 25 087 2 0 007 2 0 007 2 0 007 2 0 007 2	1.85 TeV 1.52 TeV 1.5 TeV 38 TeV 1.4 TeV 1.53 TeV 41 TeV 37 TeV 3 TeV	$\begin{split} m^{(1)}_{0}m^{(2)}_{0} &= G \Delta V \ m^{(1)}_{0}m^{(2)}_{0}m^$	1507.05525 ATLAS-CONF-2015.062 To apport 1503.03520 ATLAS-CONF-2015.078 ATLAS-CONF-2015.078 1501.05555 1502.0514 1507.05403 1507.05403 1507.05403 1507.05403 1507.05403 1502.0516
3" gen. § med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_1^1 \end{array}$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	2 2 2 2 1.1	1.78 TeV 1.76 TeV 37 TeV	m(\tilde{t}_{1}^{0})<800 GeV m(\tilde{t}_{1}^{0})=0 GeV m(\tilde{t}_{1}^{0})<300 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
3 rd gen. squarks drect production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1 \rightarrow \tilde{b}_1^{D} \\ & \tilde{b}_1 \tilde{b}_1 \rightarrow \tilde{b}_1^{D} \\ & \tilde{b}_1 \tilde{b}_1 \rightarrow \tilde{b}_1^{A} \\ & \tilde{c}_1 \tilde{c}_1 - \tilde{c}_1 \rightarrow \tilde{b}_1^{A} \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \rightarrow \tilde{b}_1^{A} \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \rightarrow \tilde{c}_1^{D} \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 - \tilde{c}_1 \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 - \tilde{c}_1 + \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 - \tilde{c}_1 + \tilde{c}_1 \\ \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1 \cdot 2 \ e, \mu \\ 0 \cdot 2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 i nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	Second	N	$\begin{split} m(\tilde{\tau}_{1}^{0}) &< 100 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &= 50 \; GeV \; m(\tilde{\tau}_{1}^{0}) &= 100 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &= 20 \; (\tilde{\tau}_{1}^{0}) \; m(\tilde{\tau}_{1}^{0}) &= 55 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &= 10 \; GeV & 150e \\ m(\tilde{\tau}_{1}^{0}) &= 65 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &= 50 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &\leq 50 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &\leq 50 \; GeV \\ m(\tilde{\tau}_{1}^{0}) &\leq 50 \; GeV \end{split}$	ATLAS-CONF-2015-068 1602.09058 1209.2102, 1407.0583 06816, ATLAS-CONF-2016-007 1407.0608 1403.5222 1403.5222 1508.08816
EW direct	$ \begin{array}{l} \tilde{t}_{\perp,\mathbf{R}}\tilde{t}_{\perp,\mathbf{R}},\tilde{t}\rightarrow t\tilde{x}_{\perp}^{0} \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*},\tilde{x}_{\perp}^{*}\rightarrow t\tilde{v}(t^{*}) \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*},\tilde{x}_{\perp}^{*}\rightarrow t\tilde{v}(t^{*}) \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tau t\tilde{v}(t^{*}), \tilde{t}\tilde{v}_{\perp}^{*}t(\tilde{v}) \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\rightarrow W\tilde{x}_{\perp}^{0}\tilde{x}_{\perp}^{*} \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\rightarrow W\tilde{x}_{\perp}^{0}\tilde{x}_{\perp}^{*}, h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\gamma_{\perp}^{*}W\tilde{x}_{\perp}^{0}\tilde{h}, \tilde{x}_{\perp}^{*}, h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\gamma_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}) \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\gamma_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/W/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/W/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/W/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/W/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{b}/W/\tau \\ \tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{x}_{\perp}^{*}\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{x}_{\perp}^{*}\tilde{v}(t^{*}), h\rightarrow b\tilde{x}_{\perp}^{*}\tilde{v}(t^{*})$	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2·3 ε.μ τ/γγ ε.μ, γ 4 ε.μ 1 ε.μ + γ	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	2 90-35 GeV 4 10-475 GeV 4 355 GeV 5 11 - 12 - 715 GeV 4 25 GeV	m(ž ⁺ ₁)=m(m(ž ⁰ ₂)=m($\begin{split} m(\tilde{t}_{1}^{2}) &= 0 \text{GeV} \\ m(\tilde{t}_{1}^{2}) &= 0 \text{GeV}, m(\tilde{t}_{1}^{2}) &= 0 \text{S}(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= 0 \text{GeV}, m(\tilde{t}_{1}^{2}) = 0 \text{S}(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) = 0, m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\ m(\tilde{t}_{1}^{2}) = 0, \text{Signations decoupled} \\$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1403.5294, 1402.7029 1405.5086 1507.05493
Long-lived particles	Direct $\hat{\chi}_1^* \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}$ Direct $\hat{\chi}_1^* \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}$ Stable, stopped $\hat{\chi}$ PA-hadron Metastable $\hat{\chi}$ PA-hadron GMSB, stable $\hat{\tau}$, $\hat{\chi}_1^0 \rightarrow \hat{\tau}(\hat{c}, \hat{\mu}) + \tau$ GMSB, $\hat{\chi}_1^0 \rightarrow \hat{\tau}_1^0$, Jong-lived $\hat{\chi}_1^0$ $\hat{\chi}_2^0, \hat{\chi}_1^0 \rightarrow eer/epu/\mu\mur$ GGM $\hat{g}_3, \hat{\chi}_1^0 \rightarrow Z\hat{G}$	$ \begin{array}{c} \stackrel{a}{\underset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	1 jet 1-5 jets - - μ - ts -	Yes Yes Yes Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	1 270 GeV 2 495 GeV 2 850 GeV 3 537 GeV 3 440 GeV 3 1.0 TeV 4 1.0 TeV	1.54 TeV	$\begin{split} m(\tilde{t}_1^*) & -m(\tilde{t}_1^*) - 160 \; MeV, \; \pi(\tilde{t}_1^*) - 0.2 \; ns \\ m(\tilde{t}_1^*) - m(\tilde{t}_1^*) - 160 \; MeV, \; \pi(\tilde{t}_1^*) - 151 \; ns \\ m(\tilde{t}_1^*) - 100 \; GeV, \; \tau > 10 \; ns \\ 100 \; GeV, \; \tau > 10 \; ns \\ 100 \; GeV, \; \tau > 10 \; ns \\ 10 \; -m(\tilde{t}_1^*) - 31 \; ns \; SPS8 \; model \\ 1 \; < \pi(\tilde{t}_1^*) < 740 \; mm, \; m(\tilde{t}_1) = 1.3 \; TeV \\ 6 \; < \pi(\tilde{t}_1^*) < 740 \; mm, \; m(\tilde{t}_1) = 1.3 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 <i>To uppear</i> 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV p_{\mathcal{D}} \mapsto_{\mathcal{V}_{1}} + X, \bar{\nu}_{r} \rightarrow e \mu / e \tau / \mu \tau \\ Blinear \ FPV \ CMSSM \\ \tilde{\mathcal{K}}_{1}^{*}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow \mathcal{W}_{1}^{\mathcal{L}}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow e x \bar{\mathcal{V}}_{p}, e \mu \tilde{\mathcal{K}}_{1}^{*}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow \mathcal{W}_{1}^{\mathcal{L}}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow \pi \bar{\mathcal{V}}_{p}, e \tau \tilde{\mathcal{V}} \\ \tilde{\mathcal{R}}_{1}^{*}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow \mathcal{W}_{1}^{\mathcal{L}}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow \pi \bar{\mathcal{V}}_{p}, e \tau \tilde{\mathcal{V}} \\ \tilde{\mathcal{R}}_{2}^{*}, \tilde{\mathcal{R}}_{2} \rightarrow q q \\ \tilde{\mathcal{R}}_{2}^{*}, \tilde{\mathcal{R}}_{2} \rightarrow q q \\ \tilde{\mathcal{R}}_{2}^{*}, \tilde{\mathcal{R}}_{2} \rightarrow \eta \tilde{\mathcal{R}}_{1}^{*}, \tilde{\mathcal{L}}_{1} \rightarrow b s \\ \tilde{\mathcal{L}}_{1}^{*}, \tilde{\mathcal{L}}_{1} \rightarrow b s \\ \tilde{\mathcal{L}}_{1}^{*}, \tilde{\mathcal{L}}_{1} \rightarrow b \delta \end{array} $	$e\mu,e\tau,\mu\tau$ $2 e,\mu$ (SS) $4 e,\mu$ $7 3 e,\mu + \tau$ $0 2 e,\mu$ (SS) $0 2 e,\mu$ (SS) $0 2 e,\mu$	0-3 b 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	k 2 100 GeV 11 100 GeV 10 100 GeV 11 100 GeV 10 100 GeV 100 GeV 10 100 GEV 100 GEV 10 100 GEV 10 100 GEV 10 100 GEV 100 GEV 100 GEV 100 GEV 10	1.7 TeV 1.45 TeV	$\begin{split} &\chi_{i_{11}1}^{i_{11}}=0.11, \lambda_{i_{12}(i_{11})i_{1230}}=0.07\\ &\pi(\phi)=\pi(\phi), z_{12,0}<1 mm \\ &\pi(\phi)=0.25m(\phi), \lambda_{12,1}\neq 0\\ &\pi(\phi^{2})=0.25m(\phi^{2}), \lambda_{12,1}\neq 0\\ &\pi(\phi^{2})=0.25m(\phi^{2}), \lambda_{12,1}\neq 0\\ &\pi(\phi^{2})=0.05 GeV\\ &\text{BR}(\rho_{i}\to Av_{i}/\mu)>20\% \end{split}$	1503.04430 1404.2500 1405.5086 1502.05886 1502.05886 1502.05886 1404.2500 1601.07453 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		m(^{ξ0} ₁)<200 GeV	1501.01325
*On sta	Only a selection of the available mass limits on new 10 ⁻¹ 1 Mass scale [TeV]								

JGU Mainz

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

$m_{\rm CT} = (m_{\rm c})$	$\tilde{b}_1 = m_{\tilde{\chi}_1^0} / m_{\tilde{b}_1}$	$_{CT}(ll) = 155 \text{ GeV}$
Variable	SRA	SRB
Event cleaning	Commo	n to all SR
Lepton veto	No e/μ with $p_{\rm T} > 10$ G	GeV after overlap removal
$E_{\rm T}^{\rm miss}$	> 250 GeV	> 400 GeV
Leading jet $p_{\mathrm{T}}(j_1)$	> 130 GeV	> 300 GeV
2nd jet $p_{\mathrm{T}}(j_2)$	> 50 GeV	> 50 GeV
Fourth jet $p_{\rm T}(j_4)$	vetoed i	f > 50 GeV
$\Delta \phi_{\min}^j$	> 0.4	> 0.4
$\Delta \phi(j_1,)$	-	> 2.5
b-tagging	j_1 and j_2	j_2 and $(j_3 \text{ or } j_4)$
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.25
$m_{\rm CT}$	> 250, 350, 450 GeV	-
m_{bb}	> 200 GeV	-

 m^{max} $(m^2 m^2)/m m^{\text{max}}(t\overline{t}) = 12E Col/$

Signal region channels	SRA250	SRA350	SRA450	SRB
Observed events	22	6	1	5
Fitted bkg events	40 ± 8	9.5 ± 2.6	2.2 ± 0.6	13.1 ± 3.2
Fitted $t\bar{t}$ events Fitted single top events Fitted W+jets events Fitted Z+jets events (Alt. method Z+jets events) Fitted "Other" events	$\begin{array}{c} 0.9 \pm 0.4 \\ 2.1 \pm 1.3 \\ 6.3 \pm 2.4 \\ 30 \pm 7 \\ (33 \pm 7) \\ 0.7 \pm 0.6 \end{array}$	$\begin{array}{c} 0.37 \pm 0.16 \\ 0.54 \pm 0.37 \\ 1.3 \pm 0.6 \\ 7.1 \pm 2.4 \\ (7.2 \pm 1.9) \\ 0.1 \pm 0.1 \end{array}$	$\begin{array}{c} 0.06 \pm 0.03 \\ 0.15 \pm 0.10 \\ 0.41 \pm 0.23 \\ 1.5 \pm 0.5 \\ (2.7 \pm 0.9) \\ 0.02 \pm 0.02 \end{array}$	$5.9 \pm 2.4 \\ 1.2 \pm 0.8 \\ 1.2 \pm 0.6 \\ 3.3 \pm 1.4 \\ 1.4 \pm 0.4$
MC exp. SM events	27	6.5	1.5	13
MC exp. $t\bar{t}$ events MC exp. single top events MC exp. W +jets events MC exp. Z +jets events MC exp. "Other" events	$ \begin{array}{r} 1.1 \\ 2.7 \\ 4.7 \\ 18 \\ 0.7 \end{array} $	$0.45 \\ 0.7 \\ 1.0 \\ 4.2 \\ 0.1$	0.07 0.20 0.31 0.9 0.02	$6.6 \\ 1.2 \\ 1.2 \\ 2.7 \\ 1.4$

Variable	CRzA	CRttA	CRstA	CRwA	CRzB	CRttB
Number of lep.	2 SFOS	1	1	1	2 SFOS	1
Lead. lep. $p_{\rm T}$ [GeV]	> 26	> 26	> 26	> 26	> 26	> 26
2nd lep. $p_{\rm T}$ [GeV]	> 20	-	-	-	> 20	-
$m_{\ell\ell}$ [GeV]	[76 - 106]	-	-	-	[76 - 106]	-
$m_{\rm T}$ [GeV]		-	-	> 30		-
Lead. jet $p_{\mathrm{T}}(j_1)$ [GeV]	-	> 130	-	> 130	50	130
4th jet $p_{\mathrm{T}}(j_4)$			vetoed if	> 50 GeV		
b-tagged jets	j_1 and j_2	j_1 and j_2	j_1 and j_2	j_1	j_2 and	j_2 and
					$(j_3 \text{ or } j_4)$	$(j_3 \text{ or } j_4)$
$E_{\rm T}^{\rm miss}$ [GeV]	< 100	> 100	> 100	> 100	< 70	> 200
$E_{\rm T}^{\rm miss, cor}$ [GeV]	> 100	-	-	-	> 100	-
m_{bb} [GeV]	-	< 200	> 200	$(m_{bj}) > 200$	-	-
$m_{\rm CT}$ [GeV]	> 150	> 150	> 150	> 150	-	-
$m_{b\ell}^{\min}$ [GeV]	-	-	> 170	-	-	-
$\Delta \phi(j_1, E_{\rm T}^{\rm miss})$	-	-	-	-	> 2.0	> 2.5

CR	CRzA	CRwA	CRttA	CRstA
Observed events	84	540	255	54
Fitted bkg events	84 ± 9	540 ± 23	255 ± 16	54 ± 7
Fitted $t\bar{t}$ events	4.7 ± 1.4	123 ± 29	169 ± 25	8.3 ± 3.8
Fitted single top events	0.4 ± 0.4	49 ± 25	27 ± 13	22 ± 8
Fitted W +jets events	-	350 ± 47	52 ± 17	23 ± 6
Fitted $Z+$ jets events	75 ± 9	5.0 ± 1.6	2.3 ± 0.5	-
Fitted "Other" events	3.6 ± 1.3	11.7 ± 2.1	4.4 ± 0.9	0.8 ± 0.4
MC exp. SM events	54	491	283	56
MC exp. $t\bar{t}$ events	5.7	148	204	10
MC exp. single top events	0.5	62	34	28
MC exp. W +jets events	-	266	40	17
MC exp. $Z+jets$ events	45	3.0	1.4	-
MC exp. "Other" events	3.6	11.7	4.4	0.8

CR	CRzB	CRttB
Observed events	55	181
Fitted bkg events	55 ± 7	181 ± 13
Fitted $t\bar{t}$ events	14 ± 4	150 ± 15
Fitted single top events	0.4 ± 0.2	16.8 ± 2.9
Fitted W +jets events	-	12.6 ± 4.9
Fitted $Z+$ jets events	41 ± 8	0.3 ± 0.1
Fitted "Other" events	-	1.3 ± 0.6
MC exp. SM events	49	196
MC exp. $t\bar{t}$ events	15	166
MC exp. single top events	0.4	17
MC exp. W +jets events	-	12.6
MC exp. Z +jets events	33	0.2
MC exp. "Other" events	-	1.3

Signal channel	$\langle \epsilon A \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$
SRA250	2.74	8.8	$15.8^{+6.3}_{-4.4}$
SRA350	1.90	6.1	$8.1^{+3.7}_{-2.3}$
SRA450	1.16	3.7	$4.4^{+\bar{2}.6}_{-1.0}$
SRB	1.57	5.0	$8.5^{+3.9}_{-2.4}$

JGU Same-sign

arXiv: 1602.09058

- two same sign leptons expected in SUSY signatures, but very rare in SM processes
- main SM contributions from ttV and lepton fakes
- analysis also targets non-3rd generation signals

Signal region	$N_{ m lept}^{ m signal}$	$N_{b-{ m jets}}^{20}$	$N_{ m jets}^{50}$	$E_{\rm T}^{\rm miss}~[{\rm GeV}]$	$m_{\rm eff}~[{\rm GeV}]$
SR0b3j	≥ 3	=0	≥ 3	>200	$>\!550$
SR0b5j	≥ 2	=0	≥ 5	>125	>650
SR1b	≥ 2	≥ 1	≥ 4	>150	>550
SR3b	≥ 2	≥ 3	-	>125	>650

$$m_{\rm eff} = \sum_{i} p_{T}^{\ell_{i}} + \sum_{k} p_{T}^{j_{k}} + E_{\rm T}^{\rm miss}$$

J. Schäffer (ATLAS)

Same-sign dilepton: Signal regions

	SR0b3j	SR0b5j	SR1b	SR3b
$N_{ m BSM}^{ m obs} \left(N_{ m BSM}^{ m exp} ight)$ $\sigma_{ m vis}^{ m obs} [m fb]$	$5.9 \ (4.1^{+1.6}_{-0.8}) \\ 1.8$	$\begin{array}{c} 6.4 \ (3.6^{+1.2}_{-1.1}) \\ 2.0 \end{array}$	$8.8 \ (6.0^{+2.6}_{-1.6}) \\ 2.8$	$3.8 (3.7^{+1.1}_{-0.5}) \\ 1.2$

	$N_{\text{lept}}^{\text{signal}}(N_{\text{lept}}^{\text{cand}})$	N_{b-jets}^{20}	N_{jets}^{25}	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	Other
VR-WW	=2(=2)	=0	≥ 2	35-200	300-900	$m(j_1 j_2) > 500 \text{ GeV}$
	=1 SS pair					$p_T(j_2) > 40 \text{ GeV}$
						$p_{\rm T}(\ell_2) > 30 {\rm ~GeV}$
						veto $80 < m_{ee} < 100 \text{ GeV}$
VR-WZ	=3 (=3)	=0	1-3	30-200	<900	$p_{\rm T}(\ell_3) > 30 {\rm ~GeV}$
VR-ttV	≥2 (-)	≥ 2	$\geq 5 \ (e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm})$	20-200	200-900	$p_T(\ell_2) > 25 \text{ GeV}$
	≥ 1 SS pair		$\geq 3 \ (\mu^{\pm}\mu^{\pm})$			veto $\{E_{\rm T}^{\rm miss} > 125 \text{ and } m_{\rm eff} > 650 {\rm GeV}\}\$
VR-ttZ	≥3 (-)	≥ 1	≥ 4 (=1 <i>b</i> -jet)	20-150	100-900	$p_T(\ell_2) > 25 \text{ GeV}$
	≥ 1 SFOS pair		$\geq 3 (\geq 2 b\text{-jets})$			$p_T(\ell_3) > 20 \text{ GeV} (\text{if } e)$
						$80 < m_{ m SFOS} < 100 { m GeV}$
All VRs	Veto e	vents belo	nging to any SR, or	if ℓ_1 or ℓ_2 is an	ı electron with	$ \eta > 1.37$ (except in VR-WZ)

Same-sign dilepton: Validation regions

arXiv: 1602.09058

Same-sign dilepton: Yields

arXiv: 1602.09058

	SR0b3j	SR0b5j	SR1b	SR3b
Observed events	3	3	7	1
Total background events $p(s=0)$	$\begin{array}{c} 1.5\pm0.4\\ 0.13\end{array}$	$0.88 \pm 0.29 \\ 0.04$	$4.5 \pm 1.0 \\ 0.15$	0.80 ± 0.25 0.36
Fake/non-prompt leptons	< 0.2	0.05 ± 0.18	0.8 ± 0.8	0.13 ± 0.17
Charge-flip	-	0.02 ± 0.01	0.60 ± 0.12	0.19 ± 0.06
$t\bar{t}W$	0.02 ± 0.01	0.08 ± 0.04	1.1 ± 0.4	0.10 ± 0.05
$t\bar{t}Z$	0.10 ± 0.04	0.05 ± 0.03	0.92 ± 0.31	0.14 ± 0.06
WZ	1.2 ± 0.4	0.48 ± 0.20	0.18 ± 0.11	< 0.02
$W^{\pm}W^{\pm}ii$	-	0.12 ± 0.07	0.03 ± 0.02	< 0.01
ZZ	< 0.03	< 0.04	< 0.03	< 0.03
Rare	0.14 ± 0.08	0.07 ± 0.05	0.8 ± 0.4	0.24 ± 0.14

	VR-WW	VR-WZ	VR-ttV	VR-ttZ
Observed events	4	82	19	14
Total background events	3.4 ± 0.8	98 ± 15	12.1 ± 2.7	9.7 ± 2.5
Fake/non-prompt leptons	0.6 ± 0.5	8 ± 6	2.1 ± 1.4	0.6 ± 1.0
Charge-flip	0.26 ± 0.05	-	1.14 ± 0.15	_
$t\bar{t}W$	0.05 ± 0.03	0.25 ± 0.09	2.4 ± 0.8	0.10 ± 0.03
$t\bar{t}Z$	0.02 ± 0.01	0.72 ± 0.26	3.9 ± 1.3	6.3 ± 2.1
WZ	1.0 ± 0.4	78 ± 13	0.19 ± 0.10	1.2 ± 0.4
$W^{\pm}W^{\pm}jj$	1.3 ± 0.5	-	0.02 ± 0.03	_
ZZ	0.02 ± 0.01	8.2 ± 2.8	0.12 ± 0.15	0.30 ± 0.19
Rare	0.10 ± 0.05	2.8 ± 1.4	2.3 ± 1.2	1.1 ± 0.6

	SR0b3j	SR0b5j	SR1b	SR3b
Diboson theoretical uncertainties	23%	16%	1%	<1%
$t\bar{t}V$ theoretical uncertainties	3%	4%	13%	9%
Other theoretical uncertainties	5%	3%	9%	15%
MC statistical uncertainties	11%	14%	3%	6%
Jet energy scale	12%	11%	6%	5%
Jet energy resolution	3%	9%	2%	3%
b-tagging	4%	6%	3%	10%
PDF	6%	6%	6%	8%
Fake/non-prompt leptons	18%	20%	18%	21%
Charge flip	-	1%	3%	8%
Total background uncertainties	30%	34%	22%	31%
Total background events	1.5	0.88	4.5	0.80

2L Stop: Signal regions JGU

Signal Region	DF	SF
leading lepton $p_{\rm T}$ [GeV]	;	> 25
sub-leading lepton $p_{\rm T}$ [GeV]	:	> 15
additional lepton (veto) $p_{\rm T}$ [GeV]	:	> 10
$m_{\ell\ell}$ [GeV]	>20	(>20 and < 71) or > 111
m_{T2} [GeV]	>	> 145
R1	>	> 0.3

Signal Region	DF	SF
Observed events	2	6
Total (constrained) SM events	2.01 ± 0.62	6.5 ± 1.7
Fit output, $t\bar{t}$ events Fit output, $\ell\ell\nu\nu$ events	$\begin{array}{c} 0.04 \pm 0.04 \\ 1.52 \pm 0.54 \end{array}$	0.06 ± 0.06 3.82 ± 1.5
Total expected SM events	2.01 ± 0.62	6.3 ± 1.2
Fit input, expected $t\bar{t}$ events Fit input, expected $\ell\ell\nu\nu$ events Expected other multi-V events Expected Higgs events Expected Z/γ^* +jets events Expected $t\bar{t} + V$ events Expected $t\bar{t} + V$ events	$\begin{array}{c} 0.04 \pm 0.04 \\ 1.52 \pm 0.54 \\ 0.34 \pm 0.12 \\ 0.01 \substack{+0.19 \\ -0.01 \\ -0.01 \\ -0.01 \\ -0.01 \\ -0.03 \\ 0.06 \pm 0.03 \end{array}$	$\begin{array}{c} 0.06 \pm 0.06 \\ 3.59 \pm 0.69 \\ 1.31 \pm 0.47 \\ 0.26 \pm 0.21 \\ 0.91 \pm 0.73 \\ 0.12 \pm 0.07 \end{array}$

Signal Region	DF	\mathbf{SF}
Total background expectation	2.01	6.5
Total background systematic	31%	27%
Jet energy scale	3%	4%
Jet energy resolution	15%	2%
$E_{\rm T}^{\rm miss}$ modelling	1%	1%
Pile up reweighting	2%	6%
MC statistical uncertainties	12%	13%
Diboson theoretical uncertainities	22%	9%
$t\bar{t}$ theoretical uncertainities	1%	1%
Z/γ^* +jets theoretical uncertainites	—	5%
Fake and non-prompt lepton composition	2%	—
Luminosity	5%	2%

2L Stop: Control region yields

$\sum_{i=1}^{2} \ell_{i} \cdot \sum_{j=1}^{2} i_{k} \cdot r^{miss}$		CRT	CRSF
$\mathbf{m}_{\rm eff} = \sum_{i=1} p_T' + \sum_{k=1} p_T'' + E_{\rm T}$	lepton selection	2 DF	2 SF
discriminate tt from diboson in	m_{T2} [GeV]	[60-110]	> 110
CR:	$m_{\ell\ell}$ [GeV]	-	71-111
$ec{ ho}_{Tb}^{\ell\ell}=ec{ ho}_T^{miss}+ec{ ho}_T^{\ell_1}+ec{ ho}_T^{\ell_2}$	$p_{\mathrm{Tb}}^{\ell\ell}$ [GeV]	-	> 30
	R1	< 0.4	> 0.3

Region	CRT	CRSF
Observed events	3718	78
Total (constrained) SM events	3718 ± 61	78.0 ± 8.8
Fit output, $t\bar{t}$ events Fit output, $\ell\ell\nu\nu$ events	$3206 \pm 90 \\ 124 \pm 38$	$\begin{array}{c} 0.5^{+1.4}_{-0.5} \\ 44 \pm 15 \end{array}$
Total expected SM events	3960 ± 110	76 ± 14
Fit input, expected $t\bar{t}$ events Fit input, expected $t\bar{\ell}\nu\nu\nu$ events Expected Wt events Expected other multi-V events Expected Higgs events Expected Z/γ^* +jets events Expected $t\bar{t}$ +V events Expected events with fake and non-prompt leptons	$\begin{array}{c} 3449\pm 84\\ 124\pm 39\\ 309\pm 38\\ 6.5\pm 1.6\\ 5.92\pm 0.82\\ 0.8^{+1.5}_{-0.8}\\ 4.7\pm 2.4\\ 61\pm 31 \end{array}$	$\begin{array}{c} 1.1^{+2.5}_{-1.1} \\ 41.1 \pm 4.7 \\ 0.07^{+0.10}_{-0.07} \\ 23.9 \pm 1.6 \\ 0.52 \pm 0.48 \\ 9^{+11}_{-9} \\ 0.99 \pm 0.52 \end{array}$

J. Schäffer (ATLAS)

JGU

LHCP, 16.6.20

2L Stop: Control regions

ATLAS-CONF-2016-009

0.8 0.6

m, [GeV]

Region	VRDF	VRSF
Observed events	222	267
Total (constrained) SM events	217 ± 33	269 ± 89
Fit output, $t\bar{t}$ events Fit output, $\ell\ell\nu\nu$ events	$\begin{array}{c} 68\pm16\\ 118\pm17 \end{array}$	43.8 ± 9.1 100 ± 39
Total expected SM events	222 ± 35	267 ± 81
Fit input, expected $t\bar{t}$ events Fit input, expected $\ell\ell\nu\nu$ events Expected Wt events Expected other multi-V events Expected Higgs events Expected Z/γ^* +jets events Expected t^2/γ^* beta sources Expected t^2/γ^* bet	$\begin{array}{c} 73\pm18\\ 118\pm17\\ 17.7\pm4.4\\ 2.50\pm0.55\\ 1.77\pm0.33\\ 0.32^{\pm0.70}_{-0.32}\\ 0.03\pm0.02\\ 8.3\pm4.2 \end{array}$	$\begin{array}{c} 47\pm10\\ 94\pm10\\ 12.5\pm2.9\\ 11.7\pm2.3\\ 1.04\pm0.72\\ 92\pm78\\ 0.02\pm0.02\\ 8.6\pm4.3\end{array}$

2L Stop: Model independent limit

Signal Region	DF	\mathbf{SF}
$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	1.3	2.1
$S_{ m obs}^{95}$	4.3 $4.3^{+2.5}_{-1.5}$	5.7 $7.0^{+3.4}_{-2.2}$

1L Stop: Signal regions

arXiv: 1606.03903

IGU

- large jets: R=1.2 or 1.3
- *am*_{T2} = best *m*_{T2} of both jet+lep combinations, when ignoring the missing object
- m^τ_{T2} = m_{T2} but using the τ instead of the lepton

Common event selection				
Trigger E ^{miss} _T trigger				
Lepton	exactly one signa	il lepton (e, μ), no addi	tional baseline leptons.	
Jets	at least four sign	al jets, and $ \Delta \phi(jet_i, \vec{p}_T^m) $	$ iss > 0.4$ for $i \in \{1, 2\}$.	
hadronic τ	veto events with	a hadronic τ and m_{T2}^{τ}	< 80 GeV.	
Variable	SR1	TCR1 / WCR1	STCR1	
\geq 4 jets with $p_T > [GeV]$	(80 50 40 40)	(80 50 40 40)	(80 50 40 40)	
E _T ^{miss} [GeV]	> 260	> 200	> 200	
H ^{miss} _{T, sig}	> 14	> 5	> 5	
m _T [GeV]	> 170	[30,90]	[30,120]	
am _{T2} [GeV]	> 175	[100, 200] / > 100	> 200	
topness	> 6.5	> 6.5	> 6.5	
m_{top}^{χ} [GeV]	< 270	< 270	< 270	
$\Delta R(b, \ell)$	< 3.0	-	-	
$\Delta R(b_1, b_2)$	-	-	> 1.2	
number of b-tags	≥ 1	$\geq 1 / = 0$	≥ 2	
	SR2	TCR2 / WCR2	STCR2	
\geq 4 jets with $p_T > [GeV]$	(120 80 50 25)	(120 80 50 25)	(120 80 50 25)	
$E_{\rm T}^{\rm miss}$ [GeV]	> 350	> 250	> 200	
H ^{miss} T. sig	> 20	> 15	> 5	
m _T [GeV]	> 200	[30,90]	[30,120]	
am _{T2} [GeV]	> 175	[100, 200] / > 100	> 200	
$\Delta R(b, \ell)$	< 2.5	-	-	
$\Delta R(b_1, b_2)$	-	-	> 1.2	
number of b-tags	≥ 1	$\geq 1 / = 0$	≥ 2	
leading large-R jet pT [GeV]	> 200	> 200	> 200	
leading large-R jet mass [GeV]	> 140	> 140	> 0	
$\Delta \phi(\vec{p}_{T}^{miss}, 2^{nd} large-R jet)$	> 1.0	> 1.0	> 1.0	
	SR3	TCR3 / WCR3	STCR3	
\geq 4 jets with $p_T > [GeV]$	(120 80 50 25)	(120 80 50 25)	(120 80 50 25)	
E_T^{miss} [GeV]	> 480	> 280	> 200	
H ^{miss} T, sig	> 14	> 8	> 5	
m _T [GeV]	> 190	[30,90]	[30,120]	
am _{T2} [GeV]	> 175	[100, 200] / > 100	> 200	
topness [GeV]	> 9.5	> 0	> 9.5	
$\Delta R(b, \ell)$	< 2.8	-	-	
$\Delta R(b_1, b_2)$	-	-	> 1.2	
number of b-tags	≥ 1	$\geq 1 / = 0$	≥ 2	
leading large-R jet pT [GeV]	> 280	> 200	> 200	
leading large-R jet mass [GeV]	> 70	> 70	> 70	

1L Stop: Control regions

1L Stop: Validation regions

arXiv: 1606.03903

JGU

No correction factors included in the plots!

JGU RPV: Tagged regions

$m(\tilde{t})$ [GeV]	Window [GeV]	Signal	Expected background	Data	p_0
		$(\pm \text{ stat.} \pm \text{ sys.})$	$(\pm \text{ stat.} \pm \text{ sys.})$		
250	[225 - 255]	$102 \pm 6 \pm 12$	$538 \pm 25 \pm 87$	68	0.10
275	[250 - 280]	$80 \pm 6 \pm 11$	$54.6 \pm 2.5 \pm 8.2$	62	0.25
300	[275 - 305]	$66 \pm 4 \pm 8$	$59.5 \pm 2.7 \pm 8.9$	59	0.50
325	[295 - 330]	$52 \pm 5 \pm 7$	$61.0 \pm 2.7 \pm 9.5$	73	0.19
350	320 - 355	$44.6 \pm 3.4 \pm 7.2$	$57.7 \pm 2.6 \pm 9.5$	80	0.07
375	345 - 375	$27.7 \pm 2.2 \pm 3.7$	$39.7 \pm 2.0 \pm 7.0$	48	0.27
400	[365 - 400]	$25.1 \pm 1.3 \pm 3.6$	$41.8 \pm 2.1 \pm 8.0$	52	0.25
425	[390 - 425]	$15.6\pm1.9\pm1.8$	$31.9\pm1.7\pm6.8$	40	0.23
450	[415 - 450]	$10.9\pm1.3\pm1.5$	$24.3\pm1.4\pm5.8$	30	0.27
475	[435 - 475]	$10.3\pm1.1\pm1.3$	$23.5 \pm 1.4 \pm 6.2$	23	0.50
500	[460 - 500]	$7.5\pm0.8\pm1.4$	$18.1 \pm 1.2 \pm 5.5$	20	0.45
525	[485 - 525]	$6.0\pm0.6\pm0.9$	$13.7 \pm 1.0 \pm 4.7$	7	0.50
550	[505 - 550]	$3.8\pm0.4\pm0.7$	$9.9\pm0.9\pm3.9$	9	0.50
575	[530 - 575]	$4.0\pm0.4\pm0.8$	$8.3\pm0.8\pm3.7$	13	0.28
600	[555 - 600]	$2.42 \pm 0.26 \pm 0.46$	$7.3\pm0.8\pm3.8$	5	0.50
625	[580 - 625]	$1.82 \pm 0.20 \pm 0.28$	$5.7\pm0.7\pm3.4$	5	0.50
650	[600 - 650]	$1.64 \pm 0.17 \pm 0.34$	$4.4\pm0.6\pm3.0$	7	0.25

Jet pairing efficiency decreases with p_T

JG U RPV: Uncertainties

- compressed spectrum
 - \rightarrow no tagging, no leptons
- initial state radiation leads to E^{miss}_T
- main backgrounds: Z
 ightarrow
 u
 u and $W
 ightarrow \ell
 u$
- muons not used for E_T^{miss} calculation

JGU Monojet NEW

 7 orthogonal bins in E^{miss}
 → exploit shape information
 E^{miss}_T = 250-300, 300-350, 350-400, 400-500, 500-600, 600-700, >700

GU Mainz

Monojet: Region overview

arXiv: 1604.07773

SR

Z(→ uu) CR

Monojet: EM1 yields

EM1	SR	$W(\rightarrow e\nu)$	$W(\to \mu\nu)$	$Z(\to \mu \mu)$
Observed events (3.2 fb^{-1})	9472	1693	4202	611
SM prediction (post-fit)	9400 ± 410	1693 ± 41	4202 ± 65	611 ± 25
Fitted $W(\to e\nu)$	859 ± 86	1176 ± 70	0.3 ± 0.1	_
Fitted $W(\rightarrow \mu \nu)$	930 ± 66	1 ± 0.2	3480 ± 130	0.6 ± 0.1
Fitted $W(\rightarrow \tau \nu)$	1910 ± 170	210 ± 13	177 ± 12	0.06 ± 0.03
Fitted $Z(\rightarrow ee)$	0.01 ± 0.01	0.3 ± 0.1	_	_
Fitted $Z(\rightarrow \mu\mu)$	36 ± 12	$0.05^{+0.04}_{-0.05}$	74 ± 8	579 ± 25
Fitted $Z(\to \tau \tau)$	24 ± 5	16 ± 2	11 ± 4	0.06 ± 0.02
Fitted $Z(\rightarrow \nu\nu)$	5050 ± 270	0.8 ± 0.1	0.6 ± 0.1	-
Expected $t\bar{t}$, single top	350 ± 110	235 ± 70	390 ± 120	18 ± 5
Expected dibosons	154 ± 13	54 ± 4	70 ± 7	13 ± 2
Multijets	22 ± 22	_	_	_
NCB	61 ± 61	-	-	-
MC exp. SM events	9620 ± 580	1880 ± 150	4140 ± 260	610 ± 42
Fit input $W(\to e\nu)$	971 ± 74	1329 ± 98	0.3 ± 0.1	_
Fit input $W(\rightarrow \mu \nu)$	908 ± 65	1 ± 0.2	3390 ± 190	0.6 ± 0.1
Fit input $W(\to \tau \nu)$	2160 ± 170	238 ± 18	200 ± 14	0.06 ± 0.03
Fit input $Z(\rightarrow ee)$	0.01 ± 0.01	0.3 ± 0.1	_	_
Fit input $Z(\rightarrow \mu\mu)$	35 ± 12	$0.05^{+0.04}_{-0.05}$	74 ± 9	579 ± 41
Fit input $Z(\to \tau \tau)$	27 ± 5	18 ± 2	13 ± 4	0.07 ± 0.02
Fit input $Z(\rightarrow \nu \nu)$	4930 ± 320	0.8 ± 0.1	0.6 ± 0.1	_
Fit input $t\overline{t}$, single top	350 ± 110	235 ± 72	390 ± 120	18 ± 5
Fit input dibosons	154 ± 14	54 ± 5	70 ± 7	13 ± 2
Multijets	22 ± 22	_	_	_
NCB	61 ± 61	-	-	_

Monojet: EM2 yields

EM2	SR	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	5542	874	2741	372
SM prediction (post-fit)	5770 ± 260	874 ± 30	2741 ± 52	372 ± 19
Fitted $W(\rightarrow e\nu)$	444 ± 48	584 ± 42	$0.03^{+0.03}_{-0.03}$	_
Fitted $W(\rightarrow \mu \nu)$	518 ± 50	0.7 ± 0.2	2248 ± 96	0.6 ± 0.1
Fitted $W(\rightarrow \tau \nu)$	1082 ± 90	118 ± 9	114 ± 9	0.03 ± 0.01
Fitted $Z(\rightarrow ee)$	$0.00^{+0.01}_{-0.00}$	0.1 ± 0.1	_	-
Fitted $Z(\rightarrow \mu\mu)$	15 ± 7	0.04 ± 0.03	33 ± 4	347 ± 20
Fitted $Z(\to \tau \tau)$	14 ± 2	7 ± 1	5 ± 1	0.17 ± 0.03
Fitted $Z(\rightarrow \nu \nu)$	3330 ± 200	0.3 ± 0.1	0.4 ± 0.1	_
Expected $t\bar{t}$, single top	209 ± 63	129 ± 39	280 ± 84	11 ± 4
Expected dibosons	121 ± 10	36 ± 4	61 ± 5	13 ± 1
Multijets	14 ± 14	_	_	-
NCB	23 ± 23	-	-	-
MC exp. SM events	6050 ± 390	971 ± 79	2800 ± 190	422 ± 36
Fit input $W(\to e\nu)$	505 ± 45	664 ± 50	$0.03^{+0.04}_{-0.03}$	_
Fit input $W(\rightarrow \mu\nu)$	526 ± 53	0.7 ± 0.2	2280 ± 140	0.6 ± 0.1
Fit input $W(\to \tau \nu)$	1230 ± 68	134 ± 10	129 ± 8	0.03 ± 0.02
Fit input $Z(\rightarrow ee)$	$0.00^{+0.01}_{-0.00}$	0.1 ± 0.1	_	_
Fit input $Z(\rightarrow \mu\mu)$	17 ± 8	0.04 ± 0.03	38 ± 4	397 ± 34
Fit input $Z(\to \tau \tau)$	16 ± 2	8 ± 1	6 ± 1	0.19 ± 0.03
Fit input $Z(\rightarrow \nu\nu)$	3380 ± 240	0.3 ± 0.1	0.4 ± 0.1	_
Fit input $t\overline{t}$, single top	209 ± 64	129 ± 40	280 ± 86	11 ± 4
Fit input dibosons	121 ± 10	36 ± 4	61 ± 5	13 ± 1
Multijets	14 ± 14	_	_	_
NCB	23 ± 23	_	_	_

Monojet: EM3 yields

EM3 \mathbf{SR} $W(\rightarrow e\nu)$ $W(\rightarrow \mu\nu)$ $Z(\rightarrow \mu\mu)$ Observed events (3.2 fb^{-1}) 2939460 1599212SM prediction (post-fit) 3210 ± 170 460 ± 21 1599 ± 40 212 ± 15 306 ± 24 Fitted $W(\rightarrow e\nu)$ 228 ± 26 0.02 ± 0.01 $0.08^{+0.12}_{-0.08}$ Fitted $W(\rightarrow \mu\nu)$ 263 ± 28 1300 ± 62 0.3 ± 0.1 Fitted $W(\rightarrow \tau \nu)$ 551 ± 47 63 ± 5 69 ± 7 0.03 ± 0.02 Fitted $Z(\rightarrow ee)$ 0.06 ± 0.01 _ _ Fitted $Z(\rightarrow \mu\mu)$ 9 ± 5 0.02 ± 0.01 16 ± 2 198 ± 15 Fitted $Z(\to \tau \tau)$ 5 ± 1 4 ± 1 3 ± 1 0.1 ± 0.1 Fitted $Z(\rightarrow \nu\nu)$ 0.21 ± 0.04 1 ± 0.1 1940 ± 130 Expected $t\overline{t}$, single top 108 ± 32 66 ± 20 166 ± 50 6 ± 2 Expected dibosons 82 ± 8 22 ± 3 44 ± 5 8 ± 1 Multijets 6 ± 6 NCB 19 ± 19 MC exp. SM events 3160 ± 220 1540 ± 120 488 ± 40 217 ± 15 Fit input $W(\rightarrow e\nu)$ 245 ± 20 328 ± 25 0.02 ± 0.01 $0.08^{+0.12}_{-0.08}$ Fit input $W(\rightarrow \mu\nu)$ 250 ± 28 1236 ± 89 0.28 ± 0.04 Fit input $W(\to \tau \nu)$ 74 ± 5 592 ± 38 68 ± 5 0.03 ± 0.02 Fit input $Z(\rightarrow ee)$ _ 0.06 ± 0.01 Fit input $Z(\rightarrow \mu\mu)$ 10 ± 5 0.02 ± 0.01 16 ± 2 202 ± 14 Fit input $Z(\to \tau \tau)$ 6 ± 1 4 ± 1 3 ± 1 0.1 ± 0.1 Fit input $Z(\rightarrow \nu \nu)$ 1840 ± 150 0.2 ± 0.03 1 ± 0.1 _ Fit input $t\overline{t}$, single top 166 ± 51 108 ± 33 66 ± 20 6 ± 2 Fit input dibosons 22 ± 3 44 ± 5 82 ± 8 8 ± 1 Multijets 6 ± 6 NCB 19 ± 19

Monojet: EM4 yields

EM4	SR	$W(\rightarrow e\nu)$	$W(\to \mu\nu)$	$Z(ightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	2324	349	1262	193
SM prediction (post-fit)	2260 ± 140	349 ± 19	1262 ± 36	193 ± 14
Fitted $W(\to e\nu)$	131 ± 16	228 ± 22	0.01 ± 0.01	_
Fitted $W(\rightarrow \mu \nu)$	167 ± 19	0.4 ± 0.1	998 ± 64	0.19 ± 0.04
Fitted $W(\to \tau \nu)$	310 ± 31	46 ± 4	46 ± 6	$0.01^{+0.02}_{-0.01}$
Fitted $Z(\rightarrow ee)$	-	0.03 ± 0.01	-	-
Fitted $Z(\rightarrow \mu\mu)$	10 ± 5	_	14 ± 1	180 ± 14
Fitted $Z(\to \tau \tau)$	3.4 ± 0.4	2.3 ± 0.2	1.8 ± 0.2	0.2 ± 0.1
Fitted $Z(\rightarrow \nu\nu)$	1460 ± 120	0.22 ± 0.04	0.2 ± 0.03	_
Expected $t\bar{t}$, single top	81 ± 28	50 ± 17	154 ± 54	5 ± 2
Expected dibosons	84 ± 8	22 ± 3	48 ± 5	8 ± 1
Multijets	8 ± 8	_	_	_
NCB	9 ± 9	-	-	-
MC exp. SM events	2470 ± 180	439 ± 36	1310 ± 100	182 ± 13
Fit input $W(\to e\nu)$	173 ± 17	302 ± 23	0.01 ± 0.01	_
Fit input $W(\rightarrow \mu \nu)$	173 ± 20	0.4 ± 0.1	1035 ± 74	0.2 ± 0.03
Fit input $W(\to \tau \nu)$	410 ± 28	60 ± 4	61 ± 7	0.02 ± 0.02
Fit input $Z(\rightarrow ee)$	-	0.03 ± 0.01	-	-
Fit input $Z(\rightarrow \mu\mu)$	9 ± 4	_	13 ± 1	169 ± 12
Fit input $Z(\to \tau \tau)$	4.5 ± 0.4	3.1 ± 0.2	2.4 ± 0.2	0.2 ± 0.1
Fit input $Z(\rightarrow \nu \nu)$	1510 ± 120	0.22 ± 0.04	0.2 ± 0.02	_
Fit input $t\overline{t}$, single top	81 ± 29	50 ± 18	154 ± 55	5 ± 2
Fit input dibosons	84 ± 8	22 ± 3	48 ± 5	8 ± 1
Multijets	8 ± 8	-	-	_
NCB	9 ± 9	-	-	_

Monojet: EM5 yields

EM5	\mathbf{SR}	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	747	111	416	67
SM prediction (post-fit)	686 ± 50	111 ± 11	416 ± 20	67 ± 8
Fitted $W(\rightarrow e\nu)$	37 ± 7	72 ± 9	_	_
Fitted $W(\rightarrow \mu \nu)$	44 ± 8	0.13 ± 0.03	326 ± 26	0.09 ± 0.02
Fitted $W(\rightarrow \tau \nu)$	101 ± 15	16 ± 2	18 ± 3	0.01 ± 0
Fitted $Z(\rightarrow ee)$	_	0.02 ± 0	-	-
Fitted $Z(\rightarrow \mu\mu)$	5 ± 2	_	4 ± 1	61 ± 8
Fitted $Z(\to \tau \tau)$	0.9 ± 0.2	0.7 ± 0.1	0.6 ± 0.1	0.03 ± 0.02
Fitted $Z(\rightarrow \nu\nu)$	443 ± 42	0.1 ± 0.01	0.09 ± 0.01	-
Expected $t\overline{t}$, single top	19 ± 7	14 ± 5	48 ± 17	2 ± 1
Expected dibosons	36 ± 5	9 ± 1	20 ± 2	4 ± 1
Multijets	1 ± 1	_	_	_
NCB	-	_	_	-
MC exp. SM events	754 ± 53	131 ± 12	444 ± 35	57 ± 4
Fit input $W(\to e\nu)$	46 ± 5	88 ± 9	_	_
Fit input $W(\rightarrow \mu \nu)$	47 ± 7	0.14 ± 0.03	350 ± 25	0.1 ± 0.01
Fit input $W(\to \tau \nu)$	124 ± 8	19 ± 2	22 ± 3	0.01 ± 0
Fit input $Z(\rightarrow ee)$	_	0.02 ± 0	_	_
Fit input $Z(\rightarrow \mu\mu)$	4 ± 1	_	3.4 ± 0.3	51 ± 4
Fit input $Z(\to \tau \tau)$	1.1 ± 0.1	0.8 ± 0.1	0.7 ± 0.1	0.03 ± 0.02
Fit input $Z(\rightarrow \nu \nu)$	476 ± 38	0.11 ± 0.01	0.1 ± 0.01	_
Fit input $t\overline{t}$, single top	19 ± 7	14 ± 5	48 ± 17	2 ± 1
Fit input dibosons	36 ± 5	9 ± 1	20 ± 2	4 ± 1
Multijets	1 ± 1	_	_	_
NCB	_	_	_	_

Monojet: EM6 yields

EM6	SR	$W(\rightarrow e\nu)$	$W(\to \mu\nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	238	40	166	18
SM prediction (post-fit)	271 ± 28	40 ± 6	166 ± 13	18 ± 4
Fitted $W(\to e\nu)$	11 ± 3	25 ± 6	_	_
Fitted $W(\rightarrow \mu \nu)$	18 ± 4	0.07 ± 0.02	137 ± 14	0.03 ± 0.01
Fitted $W(\rightarrow \tau \nu)$	27 ± 7	5 ± 1	5 ± 1	-
Fitted $Z(\rightarrow ee)$	_	0.01 ± 0	_	-
Fitted $Z(\rightarrow \mu\mu)$	2 ± 1	_	1 ± 1	16 ± 4
Fitted $Z(\to \tau \tau)$	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.01 ± 0
Fitted $Z(\rightarrow \nu\nu)$	193 ± 24	0.04 ± 0.01	0.01 ± 0	-
Expected $t\overline{t}$, single top	5 ± 2	5 ± 2	14 ± 6	0.3 ± 0.1
Expected dibosons	15 ± 3	5 ± 1	8 ± 1	1.6 ± 0.4
Multijets	0.2 ± 0.2	-	-	-
NCB	-	-	-	-
MC exp. SM events	257 ± 19	50 ± 5	150 ± 14	19 ± 2
Fit input $W(\to e\nu)$	14 ± 2	34 ± 3	_	_
Fit input $W(\rightarrow \mu \nu)$	16 ± 3	0.06 ± 0.01	119 ± 11	0.03 ± 0.01
Fit input $W(\to \tau \nu)$	37 ± 3	6.8 ± 0.4	7 ± 1	_
Fit input $Z(\rightarrow ee)$	_	0.01 ± 0	_	_
Fit input $Z(\rightarrow \mu\mu)$	1.6 ± 0.4	-	1 ± 1	17 ± 1
Fit input $Z(\to \tau \tau)$	0.37 ± 0.03	0.28 ± 0.03	0.3 ± 0.1	0.01 ± 0
Fit input $Z(\rightarrow \nu \nu)$	168 ± 14	0.04 ± 0.01	0.01 ± 0	_
Fit input $t\overline{t}$, single top	5 ± 2	5 ± 2	14 ± 6	0.3 ± 0.1
Fit input dibosons	15 ± 3	5 ± 1	8 ± 1	1.6 ± 0.4
Multijets	0.2 ± 0.2	_	_	_
NCB	_	_	_	_

Monojet: EM7 yields

EM7	SR	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	185	32	95	15
SM prediction (post-fit)	166 ± 20	32 ± 6	95 ± 10	15 ± 4
Fitted $W(\rightarrow e\nu)$	7 ± 2	21 ± 5	_	_
Fitted $W(\rightarrow \mu \nu)$	11 ± 2	0.05 ± 0.01	71 ± 11	0.01 ± 0
Fitted $W(\rightarrow \tau \nu)$	19 ± 4	5 ± 1	5 ± 1	0.01 ± 0
Fitted $Z(\rightarrow ee)$	_	_	_	_
Fitted $Z(\rightarrow \mu\mu)$	2 ± 1	_	1.1 ± 0.3	14 ± 4
Fitted $Z(\to \tau \tau)$	0.2 ± 0.1	0.16 ± 0.04	0.17 ± 0.04	0.02 ± 0.01
Fitted $Z(\rightarrow \nu\nu)$	109 ± 18	0.05 ± 0.01	0.01 ± 0	_
Expected $t\overline{t}$, single top	3 ± 1	3 ± 1	9 ± 4	0.4 ± 0.2
Expected dibosons	15 ± 2	3.5 ± 0.3	9 ± 2	1 ± 0.3
Multijets	0.4 ± 0.4	_	_	_
NCB	_	-	_	_
MC exp. SM events	186 ± 15	34 ± 3	106 ± 9	13 ± 1
Fit input $W(\to e\nu)$	8 ± 1	23 ± 2	_	_
Fit input $W(\rightarrow \mu \nu)$	12 ± 2	0.06 ± 0.01	81 ± 7	0.01 ± 0
Fit input $W(\to \tau \nu)$	21 ± 2	5 ± 0.4	5 ± 1	0.01 ± 0
Fit input $Z(\rightarrow ee)$	_	_	_	-
Fit input $Z(\rightarrow \mu\mu)$	1.5 ± 0.4	_	0.9 ± 0.1	11 ± 1
Fit input $Z(\to \tau \tau)$	0.22 ± 0.03	0.18 ± 0.01	0.19 ± 0.02	0.02 ± 0
Fit input $Z(\rightarrow \nu \nu)$	125 ± 12	0.06 ± 0.01	0.01 ± 0	_
Fit input $t\overline{t}$, single top	3 ± 1	3 ± 1	9 ± 4	0.4 ± 0.2
Fit input dibosons	15 ± 2	3.5 ± 0.3	9 ± 2	1 ± 0.3
Multijets	0.4 ± 0.4	_	_	_
NCB	_	_	_	_

Monojet: IM1 yields

IM1	SR	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	21447	3559	10481	1488
SM prediction (post-fit)	21730 ± 940	3559 ± 60	10480 ± 100	1488 ± 39
Fitted $W(\rightarrow e\nu)$	1710 ± 170	2410 ± 140	0.4 ± 0.1	_
Fitted $W(\rightarrow \mu\nu)$	1950 ± 170	2.4 ± 0.3	8550 ± 330	1.8 ± 0.3
Fitted $W(\rightarrow \tau \nu)$	3980 ± 310	462 ± 27	435 ± 28	0.14 ± 0.02
Fitted $Z(\rightarrow ee)$	0.01 ± 0.01	0.5 ± 0.1	-	_
Fitted $Z(\rightarrow \mu\mu)$	76 ± 30	0.02 ± 0.02	143 ± 10	1395 ± 41
Fitted $Z(\to \tau \tau)$	48 ± 7	30 ± 2	22 ± 4	0.5 ± 0.1
Fitted $Z(\rightarrow \nu\nu)$	12520 ± 700	1.8 ± 0.1	2.3 ± 0.2	_
Expected $t\bar{t}$, single top	780 ± 240	500 ± 150	1060 ± 330	42 ± 13
Expected dibosons	506 ± 48	150 ± 13	260 ± 25	48 ± 5
Multijets	51 ± 50	_	-	_
NCB	110 ± 110	_	_	-
MC exp. SM events	22500 ± 1400	3990 ± 320	10500 ± 710	1520 ± 98
Fit input $W(\to e\nu)$	1960 ± 160	2770 ± 210	0.4 ± 0.1	_
Fit input $W(\rightarrow \mu \nu)$	1930 ± 170	2.4 ± 0.3	8500 ± 520	1.8 ± 0.2
Fit input $W(\to \tau \nu)$	4570 ± 300	531 ± 39	500 ± 34	0.16 ± 0.03
Fit input $Z(\rightarrow ee)$	0.01 ± 0.01	0.5 ± 0.1	-	_
Fit input $Z(\rightarrow \mu\mu)$	78 ± 29	0.02 ± 0.02	146 ± 13	1427 ± 92
Fit input $Z(\rightarrow \tau \tau)$	55 ± 6	34 ± 3	25 ± 4	0.6 ± 0.1
Fit input $Z(\rightarrow \nu \nu)$	12440 ± 850	1.8 ± 0.1	2.2 ± 0.1	_
Fit input $t\overline{t}$, single top	780 ± 240	500 ± 160	1060 ± 340	42 ± 13
Fit input dibosons	506 ± 48	150 ± 13	260 ± 25	48 ± 5
data-driven exp. QCD events	51 ± 50	_	-	-
NCB	110 ± 110	_	_	_

J. Schäffer (ATLAS)

Monojet: IM2 yields

IM2 \mathbf{SR} $W(\rightarrow e\nu)$ $W(\rightarrow \mu\nu)$ $Z(\rightarrow \mu\mu)$ Observed events (3.2 fb^{-1}) 119751866 6279 877 SM prediction (post-fit) 12340 ± 570 1866 ± 43 6279 ± 79 877 ± 30 Fitted $W(\rightarrow e\nu)$ 852 ± 87 $1235 \pm 81 \ 0.06 \pm 0.04$ Fitted $W(\rightarrow \mu\nu)$ 1020 ± 100 $1.4 \pm 0.3 5080 \pm 220$ 1.2 ± 0.2 252 ± 17 Fitted $W(\rightarrow \tau \nu)$ 2070 ± 160 $257 \pm 19 \ 0.08 \pm 0.03$ $0.00\substack{+0.01\\-0.00}$ Fitted $Z(\rightarrow ee)$ 0.2 ± 0.1 _ Fitted $Z(\rightarrow \mu\mu)$ $41 \pm 18 \ 0.07 \pm 0.04$ 69 ± 5 816 ± 31 Fitted $Z(\to \tau \tau)$ 24 ± 2 14 ± 1 11 ± 1 0.5 ± 0.1 Fitted $Z(\rightarrow \nu\nu)$ 1 ± 0.1 1.7 ± 0.2 7470 ± 460 Expected $t\overline{t}$, single top 430 ± 130 266 ± 85 670 ± 220 24 ± 8 Expected dibosons 352 ± 34 97 ± 9 190 ± 20 35 ± 4 Multijets 29 ± 28 NCB 51 ± 51 MC exp. SM events 12870 ± 870 2110 ± 170 6350 ± 460 910 ± 59 Fit input $W(\rightarrow e\nu)$ $992 \pm 88 \ 1440 \pm 110$ 0.1 ± 0.1 Fit input $W(\rightarrow \mu\nu)$ 1030 ± 110 $1.4 \pm 0.2 \ 5110 \pm 340$ 1.2 ± 0.1 Fit input $W(\to \tau \nu)$ 2410 ± 140 293 ± 21 299 ± 20 0.1 ± 0.03 $0.00\substack{+0.01\\-0.00}$ Fit input $Z(\rightarrow ee)$ 0.2 ± 0.1 Fit input $Z(\rightarrow \mu\mu)$ $43 \pm 18 \ 0.07 \pm 0.04$ 72 ± 6 848 ± 55 Fit input $Z(\to \tau \tau)$ 28 ± 2 16 ± 1 $13 \pm 1 \ 0.56 \pm 0.04$ Fit input $Z(\rightarrow \nu \nu)$ 7510 ± 560 1 ± 0.1 1.7 ± 0.1 _ Fit input $t\overline{t}$, single top 430 ± 140 266 ± 85 670 ± 220 24 ± 8 Fit input dibosons 352 ± 35 97 ± 9 190 ± 20 35 ± 4 data-driven exp. QCD events 29 ± 28 NCB 51 ± 51

Monojet: IM3 yields

IM3	SR	$W(ightarrow e \nu)$	$W(\to \mu\nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	6433	992	3538	505
SM prediction (post-fit)	6570 ± 340	992 ± 32	3538 ± 60	505 ± 22
Fitted $W(\rightarrow e\nu)$	409 ± 44	651 ± 47	0.03 ± 0.02	_
Fitted $W(\rightarrow \mu \nu)$	500 ± 57	0.8 ± 0.1	2830 ± 140	0.6 ± 0.1
Fitted $W(\to \tau \nu)$	995 ± 79	134 ± 10	143 ± 11	0.05 ± 0.01
Fitted $Z(\rightarrow ee)$	_	0.13 ± 0.01	_	_
Fitted $Z(\rightarrow \mu\mu)$	27 ± 12	0.03 ± 0.01	36 ± 2	469 ± 23
Fitted $Z(\to \tau \tau)$	10 ± 1	7 ± 1	6 ± 1	0.31 ± 0.03
Fitted $Z(\rightarrow \nu \nu)$	4140 ± 290	0.6 ± 0.1	1.3 ± 0.1	_
Expected $t\bar{t}$, single top	217 ± 71	137 ± 46	390 ± 130	13 ± 4
Expected dibosons	231 ± 25	61 ± 5	129 ± 15	22 ± 3
Multijets	15 ± 15	_	_	_
NCB	28 ± 28	_	_	_
MC exp. SM events	6820 ± 490	1142 ± 94	3560 ± 280	487 ± 34
Fit input $W(\to e\nu)$	487 ± 45	775 ± 59	0.03 ± 0.02	_
Fit input $W(\rightarrow \mu \nu)$	499 ± 58	0.8 ± 0.2	2820 ± 200	0.6 ± 0.1
Fit input $W(\to \tau \nu)$	1184 ± 77	159 ± 12	170 ± 12	0.06 ± 0.02
Fit input $Z(\rightarrow ee)$	-	0.13 ± 0.01	_	-
Fit input $Z(\to \mu\mu)$	26 ± 11	0.03 ± 0.01	34 ± 3	451 ± 32
Fit input $Z(\to \tau \tau)$	12 ± 1	8 ± 1	7 ± 1	0.37 ± 0.03
Fit input $Z(\rightarrow \nu \nu)$	4130 ± 330	0.6 ± 0.1	1.3 ± 0.1	_
Fit input $t\overline{t}$, single top	217 ± 72	137 ± 46	390 ± 130	13 ± 5
Fit input dibosons	231 ± 25	61 ± 5	129 ± 15	22 ± 3
data-driven exp. QCD events	15 ± 15	_	_	_
NCB	28 ± 28	_	_	_

Monojet: IM4 yields

arXiv: 1604.07773

IM4	SR	$W(\rightarrow e\nu)$	$W(\to \mu\nu)$	$Z(\to \mu \mu)$
Observed events (3.2 fb^{-1})	3494	532	1939	293
SM prediction (post-fit)	3390 ± 200	532 ± 23	1939 ± 44	293 ± 17
Fitted $W(\rightarrow e\nu)$	187 ± 23	346 ± 29	0.01 ± 0.01	_
Fitted $W(\rightarrow \mu \nu)$	240 ± 31	0.7 ± 0.1	1532 ± 91	0.3 ± 0.1
Fitted $W(\rightarrow \tau \nu)$	458 ± 42	71 ± 6	74 ± 7	0.03 ± 0.02
Fitted $Z(\rightarrow ee)$	-	0.06 ± 0.01	-	-
Fitted $Z(\rightarrow \mu\mu)$	18 ± 7	$0.01^{+0.01}_{-0.01}$	20 ± 2	271 ± 17
Fitted $Z(\to \tau \tau)$	5 ± 1	3.4 ± 0.3	2.7 ± 0.3	0.2 ± 0.1
Fitted $Z(\rightarrow \nu \nu)$	2210 ± 170	0.41 ± 0.04	0.31 ± 0.04	_
Expected $t\bar{t}$, single top	108 ± 39	71 ± 26	225 ± 81	7 ± 3
Expected dibosons	149 ± 17	39 ± 4	85 ± 10	14 ± 2
Multijets	9 ± 9	-	-	_
NCB	9 ± 9	-	-	-
MC exp. SM events	3660 ± 270	654 ± 54	2010 ± 160	271 ± 19
Fit input $W(\to e\nu)$	241 ± 24	446 ± 34	0.02 ± 0.01	_
Fit input $W(\to \mu\nu)$	249 ± 31	0.7 ± 0.1	1590 ± 110	0.33 ± 0.04
Fit input $W(\to \tau \nu)$	592 ± 40	92 ± 7	96 ± 9	0.04 ± 0.03
Fit input $Z(\rightarrow ee)$	_	0.06 ± 0.01	_	_
Fit input $Z(\rightarrow \mu\mu)$	16 ± 6	$0.01^{+0.01}_{-0.01}$	18 ± 1	249 ± 18
Fit input $Z(\to \tau \tau)$	6.2 ± 0.5	4.4 ± 0.4	3.5 ± 0.3	0.3 ± 0.1
Fit input $Z(\rightarrow \nu \nu)$	2280 ± 180	0.43 ± 0.04	0.32 ± 0.03	_
Fit input $t\bar{t}$, single top	109 ± 39	71 ± 26	226 ± 81	7 ± 3
Fit input dibosons	149 ± 17	39 ± 4	85 ± 10	15 ± 2
data-driven exp. QCD events	9 ± 9	_	_	_
NCB	9 ± 9	-	-	-

J. Schäffer (ATLAS)

Monojet: IM5 yields

arXiv: 1604.07773

IM5	SR	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	1170	183	677	100
SM prediction (post-fit)	1125 ± 77	183 ± 14	677 ± 26	100 ± 10
Fitted $W(\rightarrow e\nu)$	56 ± 9	118 ± 13	_	_
Fitted $W(\rightarrow \mu \nu)$	73 ± 12	0.3 ± 0.1	533 ± 37	0.13 ± 0.02
Fitted $W(\rightarrow \tau \nu)$	148 ± 18	26 ± 3	28 ± 4	0.02 ± 0
Fitted $Z(\rightarrow ee)$	_	0.03 ± 0	_	_
Fitted $Z(\rightarrow \mu\mu)$	8 ± 3	0.01 ± 0	6 ± 1	91 ± 10
Fitted $Z(\to \tau \tau)$	1.4 ± 0.2	1.1 ± 0.1	1 ± 0.1	0.05 ± 0.02
Fitted $Z(\rightarrow \nu \nu)$	745 ± 66	0.2 ± 0.02	0.11 ± 0.01	_
Expected $t\bar{t}$, single top	28 ± 10	21 ± 8	71 ± 26	2 ± 1
Expected dibosons	65 ± 9	17 ± 1	37 ± 5	7 ± 1
Multijets	1 ± 1	_	_	_
NCB	_	-	_	-
MC exp. SM events	1197 ± 87	216 ± 19	700 ± 57	89 ± 7
Fit input $W(\to e\nu)$	68 ± 8	144 ± 12	-	_
Fit input $W(\rightarrow \mu \nu)$	75 ± 12	0.3 ± 0.1	551 ± 42	0.13 ± 0.02
Fit input $W(\to \tau \nu)$	181 ± 12	31 ± 3	35 ± 4	0.02 ± 0
Fit input $Z(\rightarrow ee)$	_	0.03 ± 0	_	_
Fit input $Z(\rightarrow \mu\mu)$	7 ± 2	0.01 ± 0	6 ± 1	80 ± 6
Fit input $Z(\to \tau \tau)$	1.7 ± 0.1	1.3 ± 0.1	1.2 ± 0.1	0.06 ± 0.02
Fit input $Z(\to \nu\nu)$	769 ± 64	0.2 ± 0.01	0.11 ± 0.01	_
Fit input $t\bar{t}$, single top	28 ± 10	21 ± 8	71 ± 27	2 ± 1
Fit input dibosons	65 ± 9	17 ± 1	37 ± 5	7 ± 1
data-driven exp. QCD events	1 ± 1	_	_	_
NCB	_	_	_	_

J. Schäffer (ATLAS)

Monojet: IM6 yields

IM6	\mathbf{SR}	$W(\rightarrow e\nu)$	$W(\to \mu\nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb^{-1})	423	72	261	33
SM prediction (post-fit)	441 ± 39	72 ± 8	261 ± 16	33 ± 6
Fitted $W(\rightarrow e\nu)$	18 ± 4	46 ± 8	_	_
Fitted $W(\rightarrow \mu \nu)$	29 ± 6	0.13 ± 0.03	208 ± 19	0.04 ± 0.01
Fitted $W(\rightarrow \tau \nu)$	47 ± 8	10 ± 2	10 ± 2	0.01 ± 0
Fitted $Z(\rightarrow ee)$	_	0.01 ± 0	_	-
Fitted $Z(\rightarrow \mu\mu)$	3 ± 1	_	2 ± 1	30 ± 6
Fitted $Z(\to \tau \tau)$	0.5 ± 0.1	0.4 ± 0.1	0.4 ± 0.1	0.03 ± 0.01
Fitted $Z(\rightarrow \nu \nu)$	304 ± 34	0.1 ± 0.01	0.02 ± 0	-
Expected $t\bar{t}$, single top	8 ± 3	8 ± 3	23 ± 9	0.7 ± 0.3
Expected dibosons	29 ± 4	8 ± 1	17 ± 3	3 ± 1
Multijets	1 ± 1	-	_	_
NCB	-	-	-	-
MC exp. SM events	443 ± 34	85 ± 8	256 ± 23	32 ± 3
Fit input $W(\to e\nu)$	22 ± 3	56 ± 4	_	_
Fit input $W(\rightarrow \mu \nu)$	28 ± 5	0.12 ± 0.02	200 ± 18	0.03 ± 0.01
Fit input $W(\to \tau \nu)$	58 ± 4	12 ± 1	13 ± 1	0.01 ± 0
Fit input $Z(\rightarrow ee)$	-	0.01 ± 0	_	_
Fit input $Z(\rightarrow \mu\mu)$	3 ± 1	_	2 ± 1	29 ± 2
Fit input $Z(\to \tau \tau)$	0.6 ± 0.1	0.46 ± 0.04	0.5 ± 0.1	0.03 ± 0.01
Fit input $Z(\rightarrow \nu \nu)$	293 ± 25	0.1 ± 0.01	0.02 ± 0	_
Fit input $t\overline{t}$, single top	9 ± 3	8 ± 3	23 ± 10	0.7 ± 0.3
Fit input dibosons	29 ± 4	8 ± 1	17 ± 3	3 ± 1
data-driven exp. QCD events	1 ± 1	_	_	_
NCB	_	_	_	_

Gluino Mediated

ATLAS-CONF-2015-067

• many jets $\rightarrow \ge 4(8)$ jets, ≥ 3 b-jets

• requirement on m_{eff} , $m_{\text{T}}(\ell)$ and $\min(m_{\text{T}}^{\text{b-jets}})$

$$m_{\rm T}(\vec{v}) = \sqrt{2v_{\rm T} E_{\rm T}^{\rm miss} \left(1 - \cos(\Delta \Phi(\vec{p}_{\rm T}^{\rm miss}, \vec{v}))\right)}$$

- \blacksquare signal regions for small, medium and high mass splitting between \tilde{g} and $\tilde{\chi}_1^0$
- additionally for $\tilde{g} \rightarrow tt \tilde{\chi}_1^0$
 - large R jets and top tagging
 - \blacksquare signal region with $\geq 1\ell$

Criteria common to all Gbb regions: ≥ 4 signal jets, ≥ 3 $b\text{-tagged jets}$					
	Variable	Signal region	Control region	Validation region	
	$N^{\text{Candidate Lepton}}$	= 0	_	= 0	
Criteria common	$N^{\rm Signal\ Lepton}$	-	= 1	_	
to all regions of the	$\Delta \phi_{\min}^{4j}$	> 0.4	_	> 0.4	
same type	$m_{\mathrm{T,min}}^{b-\mathrm{jets}}$	-	_	< 160	
	m_{T}	-	< 150	-	
Region A (Large mass splitting)	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 90	> 90	> 90	
	$E_{\rm T}^{\rm miss}$	> 350	> 250	> 250	
	$m_{ m eff}^{ m 4j}$	> 1600	> 1200	< 1400	
Region B (Moderate mass splitting)	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 90	> 90	> 90	
	$E_{\rm T}^{\rm miss}$	> 450	> 300	> 300	
	$m_{ m eff}^{ m 4j}$	> 1400	> 1000	< 1400	
Region C (Small mass splitting)	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 30	> 30	> 30	
	$E_{\rm T}^{\rm miss}$	> 500	> 400	> 400	
	$m_{ m eff}^{ m 4j}$	> 1400	> 1200	< 1400	

Criteria common to all Gtt 0-lepton regions: $p_{\rm T}{}^{\rm jet} > 30~{\rm GeV}$						
	Variable	Signal region	Control region	VR1L	VR0L	
	$N^{ m Signal\ Lepton}$	= 0	= 1	= 1	= 0	
Criteria common	$\Delta \phi_{\min}^{4j}$	> 0.4	_	_	> 0.4	
to all regions of the	$N^{\rm jet}$	≥ 8	≥ 7	≥ 7	≥ 8	
same type	$m_{\mathrm{T,min}}^{b-\mathrm{jets}}$	> 80	-	> 80	< 80	
	m_{T}	-	< 150	< 150	-	
	$E_{\rm T}^{\rm miss}$	> 400	> 250	> 250	> 200	
Region A	$m_{ m eff}^{ m incl}$	> 1700	> 1350	> 1350	> 1400	
(Large mass splitting)	$N^{b-\mathrm{tag}}$	≥ 3	≥ 3	≥ 3	≥ 2	
	N^{top}	≥ 1	≥ 1	≥ 1	≥ 1	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 200	> 200	> 200	
Region B	$m_{\rm eff}^{\rm incl}$	> 1250	> 1000	> 1000	> 1100	
(Moderate mass splitting)	$N^{b-\mathrm{tag}}$	≥ 4	≥ 4	≥ 4	≥ 3	
	N^{top}	≥ 1	≥ 1	≥ 1	≥ 1	
Region C (Small mass splitting)	$E_{\rm T}^{\rm miss}$	> 350	> 200	> 200	> 200	
	$m_{ m eff}^{ m incl}$	> 1250	> 1000	> 1000	> 1250	
	$N^{b-\mathrm{tag}}$	≥ 4	≥ 4	≥ 4	≥ 3	

Criteria common to all Gtt 1-lepton regions: ≥ 1 signal lepton, $p_{\rm T}{}^{\rm jet} > 30~{\rm GeV}$					
	Variable	Signal region	Control region	$\text{VR-}m_{\text{T}}$	$\text{VR-}m_{\mathrm{T,min}}^{b-\mathrm{jets}}$
Criteria common	m_{T}	> 150	< 150	> 150	< 150
to all regions of the	$N^{\rm jet}$	≥ 6	= 6	≥ 5	≥ 6
same type	$N^{b-\mathrm{tag}}$	≥ 3	≥ 3	= 3	= 3
Region A (Large mass splitting)	$E_{\rm T}^{\rm miss}$	> 200	> 200	> 200	> 200
	$m_{\rm eff}^{\rm incl}$	> 1100	> 1100	> 600	> 600
	$m_{\mathrm{T,min}}^{b-\mathrm{jets}}$	> 160	-	< 160	> 140
	N^{top}	≥ 1	≥ 1	≥ 1	≥ 1
Region B (Moderate to small mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 300	> 300	> 200	> 200
	$m_{\rm eff}^{\rm incl}$	> 900	> 900	> 600	> 600
	$m_{\rm T,min}^{b-\rm jets}$	> 160	-	< 160	> 160

Gluino Mediated: Gtt regions

Gluino Mediated: Signal region overview

ATLAS-CONF-2015-067

Signal: Gtt ($m_{\tilde{g}} = 1.7 \text{ TeV}$, $m_{\chi_1} = 200 \text{ GeV}$)					
Selection	$N_{\text{events}}^{\text{raw}}$	$N_{\text{events}}^{\text{weight}}$ (3.2 fb ⁻¹)	Efficiency (%)		
Preselection					
No cut	98000	15.1	100		
Trigger	96016	13.9	92.4		
Cleaning cuts	94676	13.7	91.1		
≥ 4 jets	94388	13.7	90.9		
\geq 3 b-jets	70386	10.3	68.5		
$E_T^{miss} > 200 \text{ GeV}$	65332	9.59	63.6		
	Gtt 0L	preselection			
Signal lepton veto	34526	5.31	35.2		
$\Delta \phi^{\min}$ cut	25836	3.97	26.3		
$N_j \ge 8$	21625	3.32	22		
$m_{T,min}^{b-jets} > 80 \text{ GeV}$	19463	2.99	19.9		
	Gt	t-0L-A			
$m_{eff}^{incl} > 1.7 \text{ TeV}$	18221	2.8	18.6		
$E_T^{miss} > 400 \text{ GeV}$	15134	2.33	15.5		
≥ 3 b-jets	15134	2.33	15.5		
≥ 1 top-tagged jet	14901	2.29	15.2		
	Gt	t-0L-B			
$m_{eff}^{incl} > 1.25 \text{ TeV}$	19360	2.98	19.7		
$E_T^{\text{miss}} > 350 \text{ GeV}$	16801	2.59	17.1		
$\ge 4 \text{ b-jets}$	10727	1.68	11.1		
≥ 1 top-tagged jet	10539	1.65	10.9		
	Gt	t-0L-C			
$m_{eff}^{incl} > 1.25 \text{ TeV}$	19360	2.98	19.7		
$E_T^{miss} > 350 \text{ GeV}$	16801	2.59	17.1		
≥ 4 b-jets	10727	1.68	11.1		
Gtt 1L preselection					
Signal lepton selection	30806	4.28	28.4		
$N_j \ge 6$	28729	4	26.5		
$m_{T,min}^{b-jets} > 160 \text{ GeV}$	18543	2.58	17.1		
$m_T > 150 \text{ GeV}$	15459	2.15	14.3		
Gtt-1L-A					
$m_{eff}^{incl} > 1.1 \text{ TeV}$	15425	2.15	14.2		
$E_T^{miss} > 200 \text{ GeV}$	15425	2.15	14.2		
≥ 1 top-tagged jet	14637	2.04	13.5		
Gtt-1L-B					
$m_{eff}^{incl} > 900 \text{ GeV}$	15456	2.15	14.3		
$E_T^{miss} > 300 \text{ GeV}$	14458	2.01	13.3		