Experimental Summary Talk – LHCP 2016

K. Einsweiler, LBL

- Attempt to summarize intense 5.5 days of LHCP in ~30 mins with selected highlights…
- Almost entirely a summary of Plenary sessions (already 42 talks !)
- Apologies to all of those whom I overlooked – all omissions and misunderstandings are the property of the speaker.

Many thanks to the organizers (especially the local ones !) for a wonderfully organized conference in a superb location !
Overview: the Lull before the Storm…

• This conference has focused on Run 1 results (many interesting and beautiful results continue to emerge !) and 2015 13 TeV analyses.

• The boost in energy from 8 → 13 TeV has a tremendous impact on searches at high mass – 2-3 fb\(^{-1}\) was enough to obliterate most limits above 1 TeV from Run 1. Suite of improved measurements at 13 TeV slowly emerging.

• The LHC has now reached “luminosity production” mode => initial luminosity reached 0.94 x 10\(^{34}\), record fill with 517 pb\(^{-1}\) and almost 2 fb\(^{-1}\) delivered, this week ! Expectation of ~2 fb-1/week in coming weeks (~5 fb\(^{-1}\) so far in 2016).

• Two major threads in LHC physics prominently on display at LHCP 2016:

 “Precision Frontier”: extraordinary progress in precision of predictions for LHC physics (calculations, generators) combined with outstanding detector performance (simulation, reconstruction, physics) => powerful physics results verifying SM Lagrangian + limits on deviations (aTGC, aQGC, EFT).

 “Search Frontier”: confront all available final states with a vast cornucopia of models, searching for cracks in SM armor, and any traces of new physics. Probe both high-mass and low-coupling axes => leave no stone unturned !
LHC Status and Outlook

• Without outstanding performance of LHC, there would be little to discuss at this conference! Detailed technical overview from Elias Metral:

• Based on performance to date, and plausible extrapolations, may exceed design luminosity by ~20% despite limitations of SPS beam dump (TIDVG)!

• Delivery of 25 fb⁻¹ in 2016 seems within reach, and even more is possible…
LHC Status and Outlook

- Record performance achieved at start of conference (already obsolete): 8.8×10^{33} peak lumi, 459 pb$^{-1}$ integrated lumi, with stable beams...
Overview of Event Generators

- Having worked at hadron colliders since 1984 (SppS, Tevatron, SSC, LHC), long ago accepted that when we talk about comparing theory and experiment at a hadron collider, the Lund string model and all that has followed from it is the foundation on which we stand...

- Thanks to Torbjorn for the masterful tour from beginnings of the technology for parton shower generators through to today's "legs and loops" overview!

Lund contributions

- string fragmentation (& colour coherence)
- dipole showers
- backwards evolution (for ISR)
- multiparton interactions (MPI)
- colour reconnection (CR)
- matching (POWHEG style) & merging (CKKW-L, ...)
- small-x evolution (CCFM, ...)
- interleaved evolution
- heavy-ion collisions
- QCD effects for BSM

Generators:
- JETSET
- PYTHIA
- Fritiof
- Ariadne
- LDC
- DIPSY
- Lepto
- VINCIA
- DIRE
- RapGap
- HIJING
- GEANT

Input from:
- Madgraph5_aMC@NLO
- POWHEG BOX
- ALPGEN
- COMIX/Sherpa
- NLOJET++
- JETRAD
- HJETS++
- BlackHat
- GoSam
- Helac
- OpenLoops
- VBFNLO
- CalpHEP/CompHEP

Match and merge strategies

Intense activity, no "final word".

CKKW
CKKW-L
MLM
UMEPS
MC@NLO
POWHEG
MENLOPS
MEPS@NLO
NL^3
UNLOPS
FxFx
NNLOPS
MiNLO
UN^2LOPS
MiN^2LOPS

Torbjorn Sjostrand
State of the Art: Precision SM Physics

• Extraordinary advances in QCD calculational technology since the LHC startup have brought us (just a few recent personal favorites!):
 - Inclusive Higgs: N3LO+NLO finite-m_t effects + EWK 1602.00695
 - VBF Higgs: N3LO assuming no color exchange 1606.00840
 - Inclusive W^+W^-: N3LL+NNLO + resummed jet-veto 1606.01034
 - Differential W^+W^-: NNLO differential with off-shell 1605.02716
 - Inclusive WZ: NNLO with off-shell decays/cuts 1604.08576
 - Two-loop corrections to interference $gg \to ZZ$ 1605.01380
 (key ingredient for off-shell $H \to ZZ$ analysis)

• Complete NNLO hadron-collider cross sections with control over kinematics:

(R. Boughezal)

Will bring Higgs and EWK physics to the next level!
State of the Art: Precision SM Physics

- Critical experimental ingredient is precision luminosity measurement!
- Very impressive survey of “state-of-the-art” => ATLAS/CMS ~ 2-2.5%

performance summary *(new since 2014)*
QCD Updates: Theory Progresses!

- Excellent overview of upcoming challenges in calculations.
- First N3LO calculations indicate control of scales – need for N3LO PDFs?
 Extending N3LO beyond $2 \rightarrow 1$ processes such as H or D-Y will take time!
- Critical to have control over kinematics (fiducial cross-sections, differential distributions) and to include EWK corrections (mixed QCD/EWK needed?)
- The “precision revolution”:

NNLO hadron-collider calculations v. time

Let me know of any significant omissions.
QCD Updates: Precision at 8 and 13 TeV

- Very precise inclusive photon analysis at 8 TeV from ATLAS (NLO+N3LL):
 - results unfolded using bin-by-bin, cross-checked with iterative method
 - cross-section given in the fiducial region
 - might constraint the PDF global fit
 - very small experimental uncertainties of a few % (better than theory uncert.)
QCD Updates: Precision at 8 and 13 TeV

- First jet cross-sections at 13 TeV from CMS:
 - New CMS paper arXiv:1605.04436
 - Double-differential inclusive: \[
 \frac{d^2\sigma}{dp_T dy} = \frac{1}{\epsilon \mathcal{L}} \frac{N_j}{\Delta p_T \Delta y}
 \]
 - \(L = 71 \text{ pb}^{-1} \) at 50 ns bx, \(\sim 19 \) pile-up
 - Results for \(\Delta R = 0.7 \) and 0.4 up to \(|y| = 4.7 \)
 - Excellent agreement with Powheg+Pythia8
 - \(p_T \) shape ok in Herwig++
 - Softer \(p_T \) in Pythia8 for larger \(|y| \)
 - Same results for both \(\Delta R \)'s
EWK Updates: Improved Diboson Calculations

Freshly-minted NNLO QCD and NLO EW for diboson processes complete the set, together with improvements to pioneering calculations of the last few years.

<table>
<thead>
<tr>
<th></th>
<th>LHCP 2015 status</th>
<th>new developments</th>
<th>comments</th>
</tr>
</thead>
</table>
| Vγ | NNLO QCD: Grazzini, Kallweit, Rathlev, arXiv: 1504.01330
beyond NNLO QCD: Caola, Melnikov, Rontsch, Tancredi, arXiv:1511.08617
NLO EW: Biedermann, Biloni, Denner, Dittmaier, Hofer, Jager, Salzfelder, arXiv: 1605.03419 | single-resonant diagrams, same-flavor lepton ZZ contributions; higher-order gg loops; exact EW corrections |
| WZ | NLO QCD (on-shell) NLO EW | NNLO QCD: Grazzini, Kallweit, Rathlev, Wiesemann, arXiv: 1604.08576 | off-shell effects, single-resonant diagrams |
NLO EW: Biedermann, Dittmaier, Hofer, Jager, arXiv: 1601.07787 | higher-order gg loops; exact EW corrections |
• Measurement at Tevatron is hard, at LHC is much harder! Can LHC compete?
• Lack of valence anti-quarks => difficult to define Collins-Soper angle, leads to substantial dilution of information at LHC (large η leptons have best information).
• Final Tevatron results approach power of LEP/SLD – Run 1 LHC can match this?
 ▪ Dominating uncertainties **due to PDFs**
 ▪ LEP and SLD measurement still most precise measurement
 ▪ new CDF measurement gets close to solve discrepancy
 ▪ **Profiling during $\sin^2\theta_W$ fit** might be able to improve PDF uncertainties
EWK Updates: Measurement of W Mass

• EWK fits are presently limited by W mass => should aim for ±5 MeV.
• Present Tevatron combination (from 2012) gives 80.387 ± 0.016 GeV (1204.0042). World average gives ± 0.015 GeV. Using all available Tevatron data, could optimistically reach ± 0.010 GeV.

• Many areas need development (LHC measurement is more difficult):
 • Mastering impact of pile-up on hadronic recoil.
 • Precision modeling of vector boson P_T: measure $P_T(Z)$ precisely and use physics to transfer to $P_T(W)$ with uncertainties.
 • PDF effects, particularly the different heavy-flavor dependence of W and Z production coupling to P_T of W and Z and different behavior of W^+ and W^-.
 • Polarization effects on both W and Z production.

• Requires a large associated measurement program to control systematic uncertainties. Several reported at this conference.

• CMS has performed a “W-like” measurement of m_Z as a “proof-of-principle” exercise. Progress, but still some ways to go to compete with Tevatron!

• For further information: see talk of Nenad Vranjes in EWK parallel session…
EWK Updates: Measurement of W Mass

- Recent progress through detailed measurements of Z polarization by both ATLAS and CMS (ATLAS 1606.00689) – not well-modelled!

- The fully differential DY cross section can be reorganised by **factorising the dynamic of the boson** production, and the kinematic of the decay (CS-Frame)

\[
\frac{d\sigma}{d p_T^2 dy dM \cos \theta d\phi} = \frac{3}{16\pi} \frac{d\sigma}{d p_T^2 dy dM} \times \left[(1 + \cos^2 \theta) + A_0 \frac{1}{2} (1 - 3 \cos^2 \theta) + A_1 \sin 2\theta \cos \phi + A_2 \frac{1}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right]
\]

- Uncertainties in \(A_i \) will **affect decay kinematics** of leptons

- CMS and ATLAS Results:
 - Significant **differences** to predictions
 - \(A_2 \) shows sensitivity to parton shower implementation
EWK Updates: Diboson Measurements

- Huge number of measurements available at 7, 8, and even 13 TeV.
- Mostly QCD, but contain EWK vertices => look for anomalies! Limits on aTGC now similar to or better than LEP.
- When NNLO calculations are available, agreement is generally good (many fiducial cross-section calculations are not yet there at NNLO).
EWK Updates: VBF, VBS, Multi-bosons

Run 1 shows great progress!

Observation of VBF (EWK production of single W or Z). The Z channel will be “golden” mode for detailed study of VBF features.

Evidence for VBS (EWK scattering of VV pairs) in ssWW and Z\gamma. WZ and W\gamma channels more challenging. Will develop substantially during Run 2.

Tri-boson production with observation of Z\gamma\gamma and evidence for W\gamma\gamma just beginning. Run 2 luminosity will be critical addition.
Higgs Updates: Theory Improvements

After years of investment, N3LO revolution has arrived – essential for precision Higgs physics (couplings!) to keep up with future experimental uncertainties!

- **Inclusive gluon-fusion Higgs production known at N3LO!** Important part of all coupling analyses (Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 1602.00695)

- **VBF production known at N2LO differentially, and N3LO inclusively** (Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660; Dreyer, Karlberg 1606.00840)

ggH from 1602.00695

Approximate error budget (percentage of total error):

- EW trunc
- PDF(th)
- scale
- finite mass

EWSB 25.7

PDF 18.4

scale 12.8

finite mass 18.1

13 TeV:

$$\sigma = 48.58 \, \text{pb}^{+2.22 \, \text{pb}}_{-3.27 \, \text{pb}} (\pm 4.56\%) \, \text{(theory)} \pm 1.56 \, \text{pb} (3.20\%) \, \text{(PDF+}\alpha_s).$$

Precision ~ 6%
Higgs Updates: New Differential Results

Extend existing results in $\gamma\gamma$ and ZZ channels to very challenging WW channel => more powerful checks of production dynamics - check latest MC modeling!

- ATLAS and CMS recently released the first differential measurements in the $H \rightarrow WW$ channel.

CMS

Data
Statistical uncertainty
Systematic uncertainty
Model dependence
ggH (POWHEG v2+JHUGen) + XH
ggH (HRes) + XH
$XH = VBF + VH$

19.4 fb^{-1} (8 TeV)

$\frac{d\sigma}{dp_T^H} [\text{fb/GeV}]$

ATLAS

$gg \rightarrow H$

- data, tot. unc.
- sys. unc.

$\sigma_{LHC-XS} \times A_{NNLOPS+PY8}$

$\sigma_{LHC-XS} \times A_{MG5_aMC@NNLO+PY8}$

$\sigma_{LHC-XS} \times A_{SHERPA 2.1.1}$

BF14

$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

$H \rightarrow WW^* \rightarrow \gamma \gamma \nu \nu$

$\frac{d\sigma}{dp_T^H} [\text{fb/GeV}]$

Ratio to NNLOPS

$= 0$

$= 1$

≥ 2

N_{jet}

arXiv:1604.02997

Ratio to HRes+XH

0

20

40

60

80

100

120

140

160

180

200

$p_T^H \ [\text{GeV}]$

arXiv:1606.01522
Higgs Updates: ATLAS+CMS Couplings

- Monumental (71 pages) combined couplings paper is out (1606.02266)!
- Production signal strengths as expected (ttH somewhat high, but difficult!)

\[\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)}^{+0.04}_{-0.04} \text{ (expt)}^{+0.03}_{-0.03} \text{ (thbgd)}^{+0.07}_{-0.06} \text{ (thsig)} \]

<table>
<thead>
<tr>
<th>ATLAS and CMS LHC Run 1</th>
<th>ATLAS+CMS</th>
<th>ATLAS</th>
<th>CMS</th>
<th>±1σ</th>
<th>±2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_b)</td>
<td></td>
<td></td>
<td></td>
<td>0.49^{+0.27}_{-0.15}</td>
<td></td>
</tr>
<tr>
<td>(\kappa_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_\ell)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_\gamma)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\kappa_{g/\gamma}) compatible with SM:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- \(\kappa_g = 0.81^{+0.13}_{-0.10} \)
- \(\kappa_\gamma = 0.90^{+0.10}_{-0.09} \)

- Global p-value compatibility with SM is 11%.

Higgs Couplings assuming no BSM (left) or allowing BSM contributions (below)

BSM < 0.34 (0.39 exp) 95% CL
Higgs Updates: ATLAS+CMS Couplings

- Allowing additional BSM contributions in loop couplings (only κ_γ and κ_g are varied) gives results on lower left. Very consistent with SM...

- Collapse couplings into fermionic ($\kappa_F = \kappa_t = \kappa_b = \kappa_{\tau} = \kappa_{\mu}$) and bosonic ($\kappa_V = \kappa_Z = \kappa_W$), perform 2D fit to each mode separately = compatible with SM.
Higgs Updates: Diphoton Resonances

- The ATLAS paper appeared on arXiv on Tues: 1606.03833. Below: 13 TeV.
- Spin-0 hypothesis analysis (left): $E_{T1} > 0.4m_{\gamma\gamma}$, $E_{T2} > 0.3m_{\gamma\gamma}$, $m \sim 750$ GeV, significance: local 3.9σ, global 2.1σ
- Spin-2 hypothesis analysis (left): $E_{T1} > 55$ GeV, $E_{T2} > 55$ GeV, $m \sim 750$ GeV, significance: local 3.8σ, global 2.1σ
- More data (~10 fb$^{-1}$? have recorded ~5 fb$^{-1}$ in 2016) expected for ICHEP.

![Spin-0 Selection](https://example.com/plot1.png)

ATLAS
- Data
- Background-only fit

Spin-0 Selection

$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$

![Data - fitted background](https://example.com/plot2.png)

![Spin-2 Selection](https://example.com/plot3.png)

ATLAS
- Data
- Background-only fit

Spin-2 Selection

$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$

![Data - fitted background](https://example.com/plot4.png)

K. Einsweiler - Lawrence Berkeley Lab

6/18/2016

Junichi Tanaka
Higgs Updates: Diphoton Resonances

• The CMS paper appeared on arXiv on Tues: 1606.04093.

• B=3.8T data sample (top) and B=0 sample (bottom):
 $E_{T1} > 75$ GeV, $E_{T2} > 75$ GeV, $m \sim 750$ GeV.

• Combined 8 and 13 TeV significance:
 local 3.4σ, global 1.6σ.

• More data (up to ~ 10 fb$^{-1}$) expected for ICHEP update…
Top Updates: Theoretical Predictions

- For NNLO, better understanding of “optimal scale” (there is one) and PDF sensitivity (significant => need highest-quality PDFs for precision predictions):

 - A scale that ensures fastest perturbative convergence (and agreement with data at low P_T, where lots of data is available and well understood)

$$\mu_0 = \begin{cases} \frac{m_T}{2} & \text{for: } p_T, p_T, p_T \bar{p}, p_T \bar{q}, \bar{q}, \\ \frac{\bar{p}_T}{4} & \text{for: all other distributions.} \end{cases}$$
Top Updates: Top Production Results

• Many high-precision inclusive results. Good ATLAS/CMS agreement, and good agreement with NNLO predictions.

• Many unfolded differential measurements appearing (resolved and boosted) – agreement with different generators not always great...

→ 8 TeV: combined LHC $e\mu$ result: 3.5% precision
→ 13 TeV: most precise result from ATLAS $e\mu$ channel: 4.4%
Top Updates: Top Properties Results

- Very broad-based program to measure Top properties, including spin and polarization, charge asymmetry, plus looking for CP violation or FCNC decays.
- Multi-faceted effort to measure Top mass (directly or indirectly) in different final states => substantial advances in progress. No signs of anything BSM!

Analysis combined using BLUE, accounts for correlations between all uncertainties.

CMS combination:
\[m_{\text{top}} = 172.44 \pm 0.48 \text{ GeV} \]

ATLAS combination:
(OLD) \[m_{\text{top}} = 172.99 \pm 0.91 \text{ GeV} \]
(NEW) \[m_{\text{top}} = 172.84 \pm 0.70 \text{ GeV} \]
(not in the combination plot)

World combination:
\[m_{\text{top}} = 174.34 \pm 0.76 \text{ GeV} \]

Total uncertainty is now well below 1 GeV
Heavy Flavor: Theory

- Summary of challenges in LHC Heavy Flavor physics:

Conclusions

- Unexpected smallness of NP challenge for theory + experiment!
- Unprecedented control over hadronic uncertainties required
 - challenge met by e.g.
 - impressive improvements in LQCD
 - symmetry analyses including breaking effects
 - improved analyses of production fractions
- Exciting anomalies in flavour processes!
 - $\gtrsim 4\sigma$ in $b \rightarrow c\tau\nu$ and $b \rightarrow sll$ processes
 - NP models constrained by complex global analyses
 - could indicate e.g. presence of a Z' or leptoquarks
- Scale-hierarchies allow for model-independent EFT analyses:
 - Meson mixing seems SM like \rightarrow strong constrains on NP
 - SMEFT yields relations between flavour-coefficients
 - allows to distinguish between Higgs-realizations!

Exciting times ahead!
Heavy Flavor: B_s Mixing Phase

- ATLAS, CMS, and LHCb have all completed their Run 1 analyses:

Results consistent with Standard Model
Heavy Flavor: CP Violation in B_s Mixing

- LHCb has updated their analysis for the full Run 1 statistics. Increased tension with D0 $\mu\mu$, but no signs of significant CPV – good agreement with SM:

$$a_{sl}^s = (0.39 \pm 0.26 \pm 0.20)^\circ$$
Heavy Flavor: Rare Decays

- New results on angular analyses such as $B \to K^*\mu\mu$, $B_s \to \phi\mu\mu$, $B \to K^{*\pm}\ell^\pm\ell^-$ continue to show modest anomalies.

- Global fits required to look for patterns, assess whether New Physics is indicated. Typically see tensions at few sigma level – better hadronic modeling needed?

Global fits to the Wilson coefficients are the best way to assess if NP is needed to explain measurements

- Take into account ~80 observables from 6 experiments including $b\to\mu^+\mu^-$, $b\to s\ell^+\ell^-$ and $b\to s\gamma$ transitions

SUSY: Theory

- Status/meaning of present SUSY searches, “naturalness” and 125 GeV Higgs:

The desired cancelations from SUSY aren’t happening. Rather than corrections being much smaller than initial value, corrections are canceling to a part in ~20.

\[\begin{align*}
\text{Gluinos above 1.8 TeV: } & \sim \text{ factor of } 30 \text{ tuning. (Less if Dirac)}
\end{align*} \]

- Missed super-partners? Compressed SUSY, Stealth SUSY, peculiar corner of pMSSM space, Split SUSY could be the reason… Still have many holes to fill in!
SUSY: Squarks and Gluinos

- Impressive overview of search variables and suite of analyses – conclusions:

<table>
<thead>
<tr>
<th>Mass (TeV)/Search</th>
<th>Squark</th>
<th>Gluino</th>
<th>Stau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Lepton</td>
<td>1.2 (0.61 for small Δm)</td>
<td>1.7 (Gqq), 1.4 (1-Step Gqq), 1.8 (Gbb)</td>
<td>N/A</td>
</tr>
<tr>
<td>One Lepton</td>
<td>N/A</td>
<td>1.6 (Gqq), 1.75 (Gtt)</td>
<td>N/A</td>
</tr>
<tr>
<td>Long Lived</td>
<td>1 (Stop), 0.935 (sbottom)</td>
<td>1.6</td>
<td>0.48</td>
</tr>
</tbody>
</table>

A lot more data still to come in 2016!
SUSY: Lepton and Photon Final States

- Broad overview of searches with di/tri-leptons, taus, and photons – conclusions:

Summary

- The search for Supersymmetry exploiting final states with leptons and photons is a vital part of our search programs.
- 8 TeV data left us with excesses in the 2L OS searches.
- First 13 TeV results give puzzling picture in the on-Z search → remains exciting topic.
- Searches give limits on $m_{\tilde{g}}$ in the range of 1.1-1.3 TeV in a multitude of simplified models.
- Reach over 2 TeV in the context of GMSB.
- $m_{\tilde{g}}$ limits range from 540 to 680 GeV, depending on model and search.
- Expected large increase in available luminosity will improve the sensitivity further, so these final states remain a topic to be watched.
SUSY: Third Generation Searches

- Detailed overview of searches for stop (+ RPV) and sbottom – conclusions:
 - Many results from ATLAS and CMS for 3G searches
 - Based on 2015 data (2.3 fb⁻¹ for CMS, 3.2 fb⁻¹ for ATLAS)
 - No significant excesses this time around...
 - New constraints on 3G SUSY parameter space
 - More results based on 2016 data are coming soon
 - Maybe we’ll have to do more than set limits...
Exotics/Dark Matter: Theory

- Proceeded to give us guidance (and inspiration!) for new physics searches:

Making progress from null results:

If we assume that the only scale is $\langle H \rangle \sim 246$ GeV (as in the SM), we have excluded experimentally any new physics!

No extra fermions, gauge bosons,… getting their mass from H

We know this thanks to the interplay between direct & indirect searches:

- **If light:** should have been seen in detectors
- **If heavy:** should have been seen indirectly

-crucial piece of information!
Exotics/Dark Matter: Theory

• Assume there is a new scale $\Lambda \sim \text{TeV} \Rightarrow$ plausible template for new physics:

Expected spectrum of the TeV Composite Sector

- 3 TeV: spin-2 resonances, spin-1 resonances
- 1 TeV: color fermionic resonances
- 500 GeV: color fermionic resonances
- 125 GeV: Higgs

Good BSM prototype for many searches

By the AdS/CFT correspondence:

Physics of Composite Sector \leftrightarrow Physics of Extra dimension
Exotics/Dark Matter: Diphophoton Resonances

• Exploration of models/explanations for an X(750) decaying to diphotons:

 – If the excess is confirmed it will be revolutionary.
 It is the dream nobody in our field anymore had.

 – Many models can explain the di-photon excess.
 They predict effects visible in many different channels. Nearly all models prefer a narrow width.
 With more data we might be able to pin down the right theory.

 – The di-photon resonance is plausible but very unexpected. Is it elementary or composite? Is it related to EWSB or dark matter?
 Hopefully the fun is just starting...
Exotics/Dark Matter: Fermionic Final States

- Covers tt resonances, tb resonances, vector-like quarks, dilepton and dijet resonances, low-mass (low coupling) dijet resonances, etc...

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2016

<table>
<thead>
<tr>
<th>Model</th>
<th>L, γ, Jets</th>
<th>E_{miss}</th>
<th>$\mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD GeV + q/0</td>
<td>1 ℓ, ℓ</td>
<td>2.8</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>AOD non-resonant tī</td>
<td>2 ℓ, ℓ</td>
<td>0.6</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>AOD $t\bar{t}$</td>
<td>3 ℓ, ℓ</td>
<td>0.6</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>AOD $W + q/0$</td>
<td>1 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Extra dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2UED/RPP</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Gauge bosons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z' to $\ell\ell$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Z' to $\gamma\gamma$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Lepophobic Z' to $\ell\ell$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>SOM W' to $\ell\ell$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>HVT W' to $\ell\ell$</td>
<td>1 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>HVT W' to $\gamma\gamma$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>LTRM W_S to $\ell\ell$</td>
<td>1 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>LTRM W_S to tb</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial-vector mediator (Dirac DM)</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Axial-vector mediator (Dirac-DM)</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Scalar LQ 1st gen</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Scalar LQ 2nd gen</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Scalar LQ 3rd gen</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>VLo T_q to $t\bar{t}$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>VLo W_l to W_W</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>VLo R_B to R_B</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>VLo Q_q to Q_q</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Excited quark $q' 	o q'$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Excited quark $q 	o q'$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Excited quark $q' 	o q'$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTSC q' to W_L</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Higgs triplet H^+ to $\ell\ell$</td>
<td>2 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Higgs triplet $H^+ 	o t$</td>
<td>1 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Magnetic monopoles</td>
<td>3 ℓ, ℓ</td>
<td>3.5</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

ATLAS Preliminary

$\mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

$\sqrt{s} = 8, 13 \text{ TeV}$

K. Einsweiler - Lawrence Berkeley Lab

6/18/2016
Exotics/Dark Matter: Fermionic Final States

- Covers tt resonances, tb resonances, vector-like quarks, dilepton and dijet resonances, low-mass (low coupling) dijet resonances, etc…

CMS Preliminary

Heavy Gauge Bosons

Excited Fermions

Multijet Resonances

Large Extra Dimensions

Compositeness
Exotics/Dark Matter: Fermionic Final States

- Covers tt resonances, tb resonances, vector-like quarks, dilepton and dijet resonances, low-mass (low coupling) dijet resonances, etc...

Vector-like quark pair production

<table>
<thead>
<tr>
<th>Process</th>
<th>Signal Strength (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q \rightarrow qW$</td>
<td>20 fb</td>
</tr>
<tr>
<td>$T \rightarrow tH$</td>
<td>35 fb</td>
</tr>
<tr>
<td>$T \rightarrow tZ$</td>
<td>25 fb</td>
</tr>
<tr>
<td>$T \rightarrow bW$</td>
<td>7 fb</td>
</tr>
<tr>
<td>$B \rightarrow bH$</td>
<td>7 fb</td>
</tr>
<tr>
<td>$B \rightarrow bZ$</td>
<td>35 fb</td>
</tr>
<tr>
<td>$B \rightarrow tW$</td>
<td>9 fb</td>
</tr>
<tr>
<td>X5/3 $\rightarrow tW$</td>
<td>4 fb</td>
</tr>
<tr>
<td>X5/3 $\rightarrow tW$</td>
<td>300 fb</td>
</tr>
<tr>
<td>$T \rightarrow bW$</td>
<td>60 fb</td>
</tr>
</tbody>
</table>

Resonances to heavy quarks

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Signal Strength (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z'(1.2%) \rightarrow tt$</td>
<td>8 fb</td>
</tr>
<tr>
<td>$Z'(10%) \rightarrow tt$</td>
<td>15 fb</td>
</tr>
<tr>
<td>$gKK \rightarrow tt$</td>
<td>40 fb</td>
</tr>
<tr>
<td>$W' \rightarrow tb$</td>
<td>40 fb</td>
</tr>
<tr>
<td>$W' \rightarrow tb \quad M_{W'} < M_W$</td>
<td>60 fb</td>
</tr>
<tr>
<td>$W' \rightarrow tb \quad M_{W'} > M_W$</td>
<td>60 fb</td>
</tr>
<tr>
<td>$Z'(1%) \rightarrow tt$</td>
<td>100 fb</td>
</tr>
<tr>
<td>$Z'(10%) \rightarrow tt$</td>
<td>120 fb</td>
</tr>
<tr>
<td>$Z'(30%) \rightarrow tt$</td>
<td>200 fb</td>
</tr>
<tr>
<td>$gKK \rightarrow tt$</td>
<td></td>
</tr>
</tbody>
</table>

Resonances to dibosons

<table>
<thead>
<tr>
<th>Diboson</th>
<th>Signal Strength (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>radion $\rightarrow HH$</td>
<td>6 fb</td>
</tr>
<tr>
<td>$W' \rightarrow WH$</td>
<td>10 fb</td>
</tr>
<tr>
<td>$Z' \rightarrow ZH$</td>
<td>13 fb</td>
</tr>
<tr>
<td>$G_{dibos}^+ \rightarrow WW$</td>
<td>20 fb</td>
</tr>
<tr>
<td>$G_{dibos}^+ \rightarrow ZZ$</td>
<td>30 fb</td>
</tr>
<tr>
<td>$W' \rightarrow VW \quad HVT(B)$</td>
<td>28 fb</td>
</tr>
<tr>
<td>$W' \rightarrow WH \quad HVT(B)$</td>
<td>40 fb</td>
</tr>
<tr>
<td>$Z' \rightarrow VH \quad HVT(B)$</td>
<td>18 fb</td>
</tr>
</tbody>
</table>

Excited quarks

<table>
<thead>
<tr>
<th>Excited Quark</th>
<th>Signal Strength (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t^* \rightarrow tg \quad S=3/2$</td>
<td>80 fb</td>
</tr>
<tr>
<td>$t^* \rightarrow tg \quad S=1/2$</td>
<td>500 fb</td>
</tr>
<tr>
<td>$b^* \rightarrow tW \quad K_L=1$</td>
<td>70 fb</td>
</tr>
<tr>
<td>$b^* \rightarrow tW \quad K_R=1$</td>
<td>60 fb</td>
</tr>
<tr>
<td>$b^* \rightarrow tW \quad K_LK_R=1$</td>
<td>70 fb</td>
</tr>
</tbody>
</table>
Exotics/Dark Matter: Bosonic Final States

• Covers diboson (VV) resonances, diphoton resonances, VH resonances, HH resonances, low-mass (< 5 GeV) boson → µµ resonances (LHCb), etc…

• Combining 8 and 13 TeV data, conclude a solid “maybe” on 750 GeV
 • LHC already delivered another 4/fb of data in 2016
 → better understanding soon!

• Di-boson resonance masses >TeV explored in all important final states
 • Interpretations in spin-0, spin-1 (HVT), spin-2 (RSG) scenarios

• Analyses with 13 TeV data supersede 8 TeV searches at >TeV masses
 • Most stringent mass limits on W'/Z'/G* resonances

• Combination of 8+13 TeV VV+VH searches disfavors bump at 2 TeV
 • Final confirmation with 2016 data
Exotics/Dark Matter: DM Searches

- Use simplified models (DM mass, mediator mass, SM/DM couplings), search for WIMP DM plus mediator(s) in X + MET and dijet channels.
- Includes MET + monojet, γ/W/Z/H, Q. Also look for mediator in dijet channels.

Relative exclusion power depends on the relative model couplings, \(g_q \) and \(g_{DM} = g_{\chi} \).
Exotics/Dark Matter: DM Searches

- Use simplified models (DM mass, mediator mass, SM/DM couplings), search for WIMP DM plus mediator(s) in X + MET channels.
- Includes MET + monojet, γ/W/Z/H, Q. Also look for mediator in dijet channels.

CMS Preliminary

<table>
<thead>
<tr>
<th>Scenario</th>
<th>DM + jets/V(cq)</th>
<th>DM + jets/V(cq)</th>
<th>DM + γ</th>
<th>DM + γ</th>
<th>DM + t</th>
<th>DM + jets/V(cq)</th>
<th>DM + t</th>
<th>DM + t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vector, $g_{W} = g_{q} = 1$</td>
<td>Axial vector, $g_{W} = g_{q} = 1$</td>
<td>Vector, $g_{W} = g_{q} = 1$</td>
<td>Axial vector, $g_{W} = g_{q} = 1$</td>
<td>FC Vector, $g_{W} = g_{q} = 1$</td>
<td>Scalar, $g_{W} = g_{q} = 1$</td>
<td>Pseudoscalar, $g_{W} = g_{q} = 1$</td>
<td>Pseudoscalar, $g_{W} = g_{q} = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dark Matter Summary* - June 2016

- **EXO-16-013**: 13TeV, 2.3fb$^{-1}$
- **EXO-16-014**: 13TeV, 2.3fb$^{-1}$
- **EXO-16-017**: 13TeV, 2.3fb$^{-1}$
- **EXO-12-055**: 8TeV, 19.7fb$^{-1}$
- **B2G-15-007**: 13TeV, 2.17fb$^{-1}$

*Observed limits
Theory uncertainties not included.

[Graph showing exclusion limits for different scenarios]
Heavy Ion Updates: Theory

• Why are Heavy Ion collisions so interesting?

Freeze-out:
• chemical: particle compositions is fixed (no more inel. Collisions)
 \(T_{\text{ch}} \approx 160 \text{ MeV} \)
• thermal: momentum spectra are fixed (no more elastic collisions)
 \(T_{\text{f}} \approx 110 \div 130 \text{ MeV} \)

Soft processes:
• high cross section
• decouple late – indirect signals for QGP

Photons (real and virtual):
• insensitive to the hadronization phase

Hard processes:
• Charm, Beauty, Jets
• Probe the whole evolution of the collision
• Thermalization time (RHIC)
 \(\tau_{\text{th}} \approx 0.6 \text{ fm/c} \)

• Key areas: **Soft Probes** (global features, bulk properties), **Small Systems** (collective “multi-particle” effects observed in pp, pPb, and PbPb), and **Hard Probes** (production of “high \(P_T \)” physics objects: photons, W/Z, jets, b/c quarkonia, heavy-flavor jets...)
Heavy Ion Updates: Hard Probes

• Examine behavior of EWK (γ/W/Z) objects in PbPb collisions as a function of centrality => overlap between colliding nuclei => number of individual collisions.

• Naively, not expected to feel influence of QGP or whatever happens between initial “pre-equilibrium” phase and final “freeze out” when temperature $\rightarrow 0$.
 Confirmed for non-colored hard probes in detail…

W bosons:

[Graph showing ATLAS and EPJC75 (2015) 23 data for W bosons]

Z bosons:

[Graph showing CMS data for Z bosons with R_{AA} as a function of N_{part}]

Equation:

$$\int L dt \sim 0.14 - 0.15 \text{ nb}^{-1} \quad \text{Pb+Pb} \quad \sqrt{s_{NN}} = 2.76 \text{ TeV}$$
Heavy Ion Updates: Hard Probes

- Examine behavior of colored objects: quarkonia (upsilon states) and jets.
- For quarkonia, observe “melting” of bound state as qqbar potential is changed.
- For jets, observe “asymmetry” as high P_T partons lose energy to medium, which is transported to large angles and lower energies relative to nominal jet axis.

- ATLAS fully unfolded di-jet asymmetry distributions $x_J \equiv p_{T2}/p_{T1}$

- Significant shift toward large di-jet asymmetry in central HI collisions w.r.t. pp reference.
Upgrades at LHC: Overview

- Future LHC/HL-LHC Plan: LS2: $\sim 100 \text{ fb}^{-1}$, LS3: $\sim 300 \text{ fb}^{-1}$, 20xx: $\sim 3000 \text{ fb}^{-1}$

LHC roadmap: according to MTP 2016-2020

- **LS2** starting in 2019
 - => 24 months + 3 months BC

- **LS3** LHC: starting in 2024
 - => 30 months + 3 months BC

- Injectors: in 2025
 - => 13 months + 3 months BC

Lumi-level @ 5×10^{34} => 250 fb$^{-1}$/yr, @ 7.5×10^{34} => 300 fb$^{-1}$/yr, HL-LHC is 12-15 year program!
Upgrades at LHC: Overview

Phase-1 Upgrade programs (ready for installation in LS2 => 2019):

- All four LHC experiments have embarked on very substantial phase-1 upgrades, with only about 2.5 years to go before installation.
- The scope of ALICE+LHCb is similar to ATLAS+CMS, with a CORE value of around 200M in total => these are very substantial upgrades.
- For ALICE and LHCb, these upgrades provide major new capabilities to extend their ability to digest more data and make more precise measurements (note neither experiment operates at full LHC luminosity).
- For ATLAS and CMS, these upgrades are largely “anticipating” their larger phase-2 programs, enhancing the performance of the detectors for maximum physics up to LS3 (2024), while reducing phase-2 work in LS3.
- Run 3 will benefit from the injector upgrade (LIU), and this could allow β^* luminosity leveling to double the integrated luminosity. Expect $L \sim 2 \times 10^{34}$.

Phase-2 Upgrade programs (ready for installation in LS3 => 2024):

- Major upgrades for ATLAS and CMS, with total tracker replacements, and combined total cost of around 500M.
- Designed to allow operation up to ultimate luminosity of HL-LHC of 7.5×10^{34} ($\mu = 200$). Brings LHC to the limits of a 25ns machine, as at ultimate luminosity, beam lifetime limited by “burn-off” from pp inelastic cross-section.
Upgrades at LHC: Comments

• Starting already during Run 2, all four LHC collaborations are running a “three ring circus” of Operations, Physics, and Upgrade.

This creates major conflicts for resources (people!):

• Intense pressure to produce rapid physics results keeps a large fraction of the community in “physics production” mode as luminosity pours in and analyses are constantly updated and improved.

• Operational challenges in a constantly upgraded operational configuration (more luminosity per unit time!) requiring high efficiency and reliability for the detectors. Detectors, and the people who know them, are constantly aging!

• Upgrades require substantial investments of both instrumentation and performance/physics expertise to design, optimize, construct, and commission. This clashes very substantially with previous two critical activities.

• Collaborations are constantly working to improve efficiency in all areas, but at some point we exceed our capacity!

• If we are truly committed to the phase-1 and phase-2 upgrades, we will need to significantly improve the way we produce physics. Otherwise we (at least for ATLAS and CMS with phase-1/2!) will not succeed with our goals!

• Think more carefully about timescales and numbers of updates required for any given analysis during Run 2/3. Higher thresholds for “re-doing” analyses will not reduce our science output very much, but will free many people for operations and upgrade, and reduce the barriers between these activities!
Summary of Summaries…

• Run 2 at the LHC is finally up to speed, with potential for data to arrive at roughly 2 fb⁻¹/week => 2015 data sample every ~10 days!

• Run 2 promises to deliver O(100) fb⁻¹ by the end of 2018 => typically a factor 10 in statistical power over Run 1 for measurements (will not see this again until early 2030’s !!!), and even more for searches!

• Extraordinary progress in theoretical and experimental precision will bring a new round of stringent tests on the “precision frontier” by the end of Run 2.

• The arrival of 13 TeV data in large quantities should make 2016 the best year for the “search frontier” so far.

• New analyses for ICHEP should deliver clarity on the X(750) saga!

• No other significant anomalies visible at this conference (sigh…)

Can look forward to an even more exciting LHCP 2017 !!!