Status and recent highlights from ALICE

Ionut Arsene on behalf of the ALICE Collaboration University of Oslo

ALICE apparatus

ALICE performance

ACORDE

Central barrel:

> Tracking and PID in $|\eta|$ <1

- Precise particle id based on dE/dx: TPC,TRD, ITS
- > anti-4He nuclei observed directly

See talk by Marian Ivanov on monday afternoon

Combined *dE/dx* and TOF measurements offer π/K/p separation up to high momenta

ALICE performance

ALICE performance

ACORDE

MUON arm:

- ► Muon reconstruction in $-4 < \eta < -2.5$
- \rightarrow ψ and Y measurements down to $p_{+}=0$

ALICE, EPJ C76 (2016) 4, 184

 \triangleright ψ and Y cross-section measurement in pp collisions at √s=8 TeV

/ absorber / L3 solenoid dipole

2015 pp runs

- > pp collisions at \sqrt{s} =13 TeV
 - Minimum bias: 11 nb⁻¹
 - Dimuons: 4.35 pb⁻¹
 - High multiplicity events: 2.05 pb⁻¹
 - Study of the onset for collective effects in pp collisions

See talk by Vytautas Vislavicius on tuesday morning

- pp collisions at √s=5.02 TeV (reference for p-Pb and Pb-Pb measurements)
 - Minimum bias: 2.5 nb⁻¹
 - Dimuons: 112 nb⁻¹

Charged particle density at $\sqrt{s}=13$ TeV

ALICE, PLB753 (2016) 319

- $\rightarrow dN_{ch}/d\eta \ (|\eta| < 0.5, INEL) = 5.31 \pm 0.18$
- > Good agreement between data and PYTHIA6 calculations for the $\ensuremath{p_{\mathrm{T}}}$ integrated densities

2015 Pb-Pb run at $\sqrt{s_{NN}}$ =5.02 TeV

Pb-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

- Minimum bias: 19 μb⁻¹
- Dimuons: 241 μb⁻¹
- ECAL: 126 μb⁻¹
- Ultra-peripheral collisions: 139 μb⁻¹
- First papers have been published
 - Charged particle density Phys.Rev.Lett. 116(2016)222302
 - Anisotropic flow Phys.Rev.Lett. 116(2016)132302

$dN_{ch}/d\eta$ in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV

ALICE, PRL116(2016)222302

- $< dN_{ch}/d\eta > (0-5\%) = 1943\pm54$
 - x 2.5 the average multiplicity per participant pair in a pp collision at the same energy
- The average yield per participant pair is strongly dependent on collision centrality
 - Similar trend seen at $\sqrt{s_{NN}}$ =2.76 TeV
 - Yield in peripheral collisions close to the one measured in p-Pb and pp collisions

See talk by Christian Holm on tuesday afternoon

Anisotropic flow in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV

ALICE, PRL116(2016)132302

- Anisotropic flow measurements using two- and multi-particle cumulants
- ► Elliptic flow results $v_2(p_T)$ show very similar values to the ones seen at $\sqrt{s_{NN}} = 2.76$ TeV

$$\frac{dN}{d\,\phi} \propto 1 + 2\,v_1 \cos{(\phi - \Psi)} + 2\,v_2 \cos{[2(\phi - \Psi)]} + 2\,v_3 \cos{[3(\phi - \Psi)]} + \dots$$

Anisotropic flow in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV

ALICE, PRL116(2016)132302

- Anisotropic flow measurements using two- and multi-particle cumulants
- Elliptic flow results $v_2(p_T)$ show very similar values to the ones seen at $\sqrt{s_{NN}}$ =2.76 TeV
- > Higher harmonics (v_3, v_4) as functions of p_T are also unchanged with energy
- > v_3 becomes larger than v_2 at p_T >2 GeV/c in central collisions

$$\frac{dN}{d\,\phi} \propto 1 + 2\,v_1 \cos(\varphi - \Psi) + 2\,v_2 \cos[2(\varphi - \Psi)] + 2\,v_3 \cos[3(\varphi - \Psi)] + \dots$$

Anisotropic flow in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV

ALICE, PRL116(2016)132302

- Anisotropic flow measurements using two- and multi-particle cumulants
- Elliptic flow results $v_2(p_T)$ show very similar values to the ones seen at $\sqrt{s_{NN}}$ =2.76 TeV
- > Higher harmonics (v_3, v_4) as functions of p_T are also unchanged with energy
- > v_3 becomes larger than v_2 at p_T >2 GeV/c in central collisions
- > $p_{_{\rm T}}$ -integrated $v_{_{2}}$, $v_{_{3}}$ and $v_{_{4}}$ indicate a mild increase with collisions energy attributed to the increase in $< p_{_{\rm T}} >$
- Good agreement with hydrodynamical calculations
 - Measurements support a low value for the shear viscosity to entropy

 $\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos(\varphi - \Psi) + 2v_2 \cos[2(\varphi - \Psi)] + 2v_3 \cos[3(\varphi - \Psi)] + \dots \text{density ratio } (\eta/s)$

Run-1 recent highlights Jets

Jet shapes in Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV

- Collimated jets have lower g
- Radial moment shifted to lower values in Pb-Pb relative to PYTHIA
 - Jet cores are more collimated in Pb-Pb
- p_TD shifted to higher values in Pb-Pb relative to PYTHIA
 - > Fewer jets constituents and/or larger $p_{\scriptscriptstyle T}$ dispersion

- $\rightarrow p_{T}D$ measures the p_{T} dispersion
 - > Jets with fewer constituents typically have higher $p_{\mathsf{T}}\mathsf{D}$

Jet shapes in Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV

- Qualitative agreement with JEWEL model calculations
 - Jets in model calculations become collimated due to soft particle emission at large angles, which ends up outside the jet cone

Production of strange hadrons in jets

- Λ/K⁰_s ratio in jets significantly lower than for the inclusive measurements in high multiplicity p-Pb and Pb-Pb collisions
 - Ratio in jets consistent with PYTHIA expectations (i.e. vacuum fragmentation)
 - Baryon enhancement seen in p-Pb and Pb-Pb collisions does not originate in jets

Charged jet production in p-Pb at $\sqrt{s_{NN}}$ =5.02 TeV

ALICE, EPJ C76 (2016) 5, 271

$$Q_{pPb} = \frac{d_{pPb}^{2N}/d\eta dp_{T}}{\langle N_{coll} \rangle d^{2}N_{pp}/d\eta dp_{T}}$$

- Charged jets production in p-Pb collisions measured as a function of centrality
- P $Q_{\rm pPb}$ ~1 for all centrality classes and independent of the resolution parameter R and jet $p_{\rm T}$
 - No or very small CNM effects in this kinematic range

Run-1 recent highlights Heavy flavour

See talk by Chiara Zampolli on thursday afternoon

D⁰ cross-section down to p_{τ} =0 in pp at \sqrt{s} =7 TeV

- Data and theory calculations in agreement
- Theoretical uncertainties are currently larger than those of the measurements
- $\rightarrow d\sigma/dy \text{ (prompt D}^0) = 518\pm43(\text{stat.})^{+57}_{-102}(\text{syst.})\pm18(\text{lumi.})\mu\text{b}$
- Updated total charm production cross-section

D° cross-section down to $p_{T}=0$ in p-Pb at $\sqrt{s_{NN}}=5.02$ TeV

- $\rightarrow d\sigma/dy \text{ (prompt D}^0) = 79.0\pm7.3(\text{stat.})^{+7.1}_{-13.4}(\text{syst.})\pm2.9(\text{lumi.}) \text{ mb}$
- Charm production cross-section in p-Pb
 - strong constrain on the size of CNM effects due to nPDF modifications

D^o – meson nuclear modification in p-Pb

- $R_{\text{pPb}}(p_{\text{T}}>0, -0.96 < y_{\text{cms}} < 0.04) = 0.89 \pm 0.11(\text{stat.})^{+0.13}(\text{syst.})$
- Measurement compatible with no CNM effects
- Experimental uncertainties are still too large to distinguish between the existing models
 - Much larger sample of p-Pb collisions and pp reference to be collected soon

D – hadron correlations in pp and p-Pb

- Look for hadronic activity near and away from the direction of the Dmeson momentum vector
- Very similar correlation functions obtained in both pp and p-Pb for all the scanned kinematic ranges
 - Charm-quark fragmentation unmodified by CNM effects?

Anisotropic flow of heavy-flavour decay electrons in Pb-Pb collisions

- Does heavy flavour thermalize and consequently flows in the QGP?
- Heavy flavour elliptic flow sensitive to transport properties of QGP
- Significant non-zero elliptic flow observed
- Models which implement strong collisional energy loss and hadronisation via coalescence agree with the data

Summary

- The ALICE status and recent highlights were presented
- Run-2 news
 - First results from pp collisions at \sqrt{s} =13 TeV on charged particle multiplicity are published
 - ALICE published 2 papers from the Pb-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV
 - Charged particle multiplicity vs centrality
 - Anisotropic flow using multi-particle cumulants
 - ...and much more very soon!
- Run-1 highlights
 - Jet shapes in Pb-Pb collisions $\sqrt{s_{NN}}$ =2.76 TeV
 - Lambda-to-kaon ratio inside jets in p-Pb and Pb-Pb collisions
 - Jet production in p-Pb collisions
 - D $^{ ext{o}}$ cross-sections in pp and p-Pb at mid-rapidity measured down to zero $ho_{ ext{ iny T}}$
 - Open-charm cross-section and D-hadron correlations nuclear modifications in p-Pb
 - HF electron elliptic flow in Pb-Pb collisions