Status and Developments of Event Generators

Torbjörn Sjöstrand

Theoretical Particle Physics
Department of Astronomy and Theoretical Physics
Lund University
Sölvegatan 14A, 223 62 Lund

LHCP 2016, Lund, 13 June 2016
Table of Contents

★ Historical introduction from the Lund perspective ★
 ★ Generator overview + MCnet ★
 ★ Herwig, Sherpa, PYTHIA news & plans ★
 ★ Match & merge overview ★
 ★ Some other programs ★
 ★ Summary and outlook ★

Further talks by Gavin Salam, Rikkert Frederix, Tomas Jezo, Marek Schönherr, Frank Tackmann, . . .
. . . and several of the experimental presentations (?)
1976: Lund QCD Phenomenology group

Created by Bo Andersson and Gösta Gustafson

Lund string model: \(\sim\) like rubber band that is pulled apart and breaks into pieces, or like a magnet broken into smaller pieces.

Complete, consistent description of 2-jet events — but not necessarily perfect.
1978: JETSET version 1

SUBROUTINE JETGEN(in)
COMMON /JET/ K(100:2), P(100:5)
COMMON /PART/ PD, PSI, SIGMA, CH2, BES, WFIN, IFLEBEF
COMMON /DATA/ T(100:2), CMIX(100:2), PMAJ(10)
IFLEBEF(10:IFLEBEF/2)
END

1978: JETSET version 1

SUBROUTINE DECAY(IPP)
COMMON /JET/ K(100:2), P(100:5)
COMMON /DATA/ T(100:2), CMIX(100:2), PMAJ(10)
DIMENSION U(2, 2)

C 1 DECAY CHANNEL choice GIVES DECY PRODUCTS

C 1 RANDOM CHOICE OF X=EXP(252MEGON)/EXP(AVAILABLE GIVES E AND P)
IRRANG(0) = X = IPEND(0) IRRANG(0), PTCV(1, 1) = X = Y ,
C 1 IF(IRRANG(0).EQ.0) IRRANG(1) = IPEND(0) X = Y ,
C 4 IF UNSTABLE DECAY CHAIN INTO STABLE PARTICLES

C 7 FLAVOUR AND PT OF QUARK FORMED IN DECAY WITH ANTIQUARK ABOVE

C 8 IF ENOUGH EPZ LEFT 60 TO 2

SUBROUTINE LISTIN
COMMON /JET/ K(100:2), P(100:5)
COMMON /DATA/ CHA(19), CHA(19), CHA(32)
K(100:2) = 100
DO 100 I = 1
IF (K(1:1).EQ.0) RETURN
C 1 FLAVOUR AND PT FOR FIRST QUARK

C 2 THREE-PARTICLE DECAY CHOICE OF INVARIANT MASS OF PRODUCTS 2+3

C 3 TWO-PARTICLE DECAY IN CM, TWICE TO SIMULATE THREE-PARTICLE DECAY

C 4 DECAY PRODUCTS LORENTZ TRANSFORMED TO LAB SYSTEM

SUBROUTINE EDITIN
COMMON /JET/ K(100:2), P(100:5)
COMMON /JETPAR/ ITHROW, PMIN, PMIN, THETA, PHI, BETA(3)
REAL ROT(3, 3), PHI(3)
C 1 THROW AWAY NEUTRAL OR UNSTABLE OR WITH TOO LOW PZ OR P

END

≈ 200 punched cards

Fortran code
1980: string (colour coherence) effect

Predicted unique event structure; inside & between jets. Confirmed first by JADE 1980.

Generator crucial to sell physics! (today: PS, M&M, MPI, . . .)

String motion in the event plane (without breakups)
1980: string (colour coherence) effect

Predicted unique event structure; inside & between jets.
Confirmed first by JADE 1980.

Generator crucial to sell physics!
(today: PS, M&M, MPI, ...)

string motion in the event plane (without breakups)
Lund contributions

Physics:
- string fragmentation
 (& colour coherence)
- dipole showers
- backwards evolution (for ISR)
- multiparton interactions (MPI)
- colour reconnection (CR)
- matching (POWHEG style)
 & merging (CKKW-L, . . .)
- small-\(x\) evolution (CCFM, . . .)
- interleaved evolution
- heavy-ion collisions
- QCD effects for BSM

Generators:
- JETSET
- PYTHIA
- Fritiof
- Ariadne
- LDC
- DIPSY
- Lepto
- VINCIA
- DIRE
- RapGap
- HIJING
- GEANT
The workhorses

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978):
originated in hadronization studies,
still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984):
originated in coherent showers (angular ordering),
cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000):
had own matrix-element calculator/generator
originated with matching & merging issues.
All full-fledged generators need to address many issues:
MCnet

Herwig
PYTHIA
Sherpa
MadGraph
Plugin:
Ariadne
DIPSY
HEJ
CEDAR:
Rivet
Professor
HepForge
LHAPDF
HepMC

- Generator development
- Services to community
- PhD student training
- Common activities

Nodes:
Manchester
CERN
Durham
Glasgow
Göttingen
Heidelberg
Karlsruhe
UC London
Louvain
Lund
Monash (Au)
SLAC (US)

Nodes:
Manchester
CERN
Durham
Glasgow
Göttingen
Heidelberg
Karlsruhe
UC London
Louvain
Lund
Monash (Au)
SLAC (US)
Herwig
PYTHIA
Sherpa
MadGraph
Plugin:
Ariadne
DIPSY
HEJ
CEDAR:
Rivet
Professor
HepForge
LHAPDF
HepMC

- EU-funded 2007–10, 2013–16, **2017–20**
- Generator development
- Services to community
- PhD student training
- Common activities
- Short-term studentships (3 - 6 months).
 Experimentalists welcome!
- Summer schools
 2016: DESY (w. CTEQ)
 2017: Lund, 3 - 7 July

Send your students!

Nodes:
Manchester
CERN
Durham
Glasgow
Göttingen
Heidelberg
Karlsruhe
UC London
Louvain
Lund
SLAC (US)

Monash (Au)
Herwig++ 3.0 ⇒ **Herwig 7.0** (December 2015). Concludes 16 years effort to replace Fortran Herwig 6.

- **NLO** matched to parton showers **default** for hard process.
 - Fully **automated**: no external codes to run, no intermediate event files.
 - Choice of **subtractive** (MC@NLO type) or **multiplicative** (PowHeg type) matching.
Matchbox in Herwig 7

Matchbox
- MadGraph
- HJets++
- Recola
- ColorFull
- CVolver
- GoSam
- NJet
- OpenLoops
- VBFNLO

Matching subtractions
- ME corrections
 - QTildeShower
 - DipoleShower
 - Eikonal MPI
 - Cluster Hadronization
 - Decays
 - Built-in ME BSM & UFO

script downloads & sets up external libraries (above + more)

(figure by S. Plätzer)
Herwig++ 3.0 ⇒ **Herwig 7.0** (December 2015). Concludes 16 years effort to replace Fortran Herwig 6.

- **NLO** matched to parton showers default for hard process.
 - Fully *automated*: no external codes to run, no intermediate event files.
 - Choice of *subtractive* (MC@NLO type) or *multiplicative* (PowHeg type) matching.

- Two showers: angular ordered or **dipole**.
 - Spin correlations and QED radiation in the former.

- Facilities for parton-shower uncertainties.

- New tunes, including MB/UE.

- Vastly improved documentation, usage and installation.

- Several parallelization options.
LO → NLO ⇒ major improvements in e^+e^- and pp alike.
Subtractive or multiplicative matching less important.
Ditto angular-ordered or dipole shower.
Herwig 7.1 later this year:

- **NLO multijet merging** (unitarized merging ideas).
- Loop-induced processes.
- Extended UFO-model support.
- Extended reweighting: weight vectors in HepMC files.
- Improved top decay in dipole shower.
- Interface to HEJ.
- Soft interactions and diffraction.

In the longer run:

- Code now 500k lines ⇒ need for significant restructuring.
- Amplitude-based parton showers.
Recent news:

- **DIRE shower** (see below).
- **UNNLOPS** - first results on NNLO merging.
Sherpa NNLO QCD with parton showers

W production @ NNLO+PS with SHERPA + BLACKHAT

[Höche et al. arXiv:1507.05325]

Inclusive Jet Multiplicity

\[\sigma(W + \geq N_{\text{jet}} \text{ jets}) \text{ [pb]} \]

- fully differential hadron-level NNLO+PS simulation
 - inclusive (born-like) distribution NNLO accurate
 - 0-jet bin NNLO, 1-jet bin NLO, 2-jet bin LO, \(\geq 3 \)-jets shower accuracy
- small corrections away from Born kinematics
Sherpa 2.2 news and activities

Recent news:

- **DIRE shower** (see below).
- **UNNLOPS** - first results on NNLO merging.
- On-the-fly **scale variations** of NLO ME + PS. ME observables through interpolating grids (ApplGrid, FastNLO, MCgrid, ...).
- **Electroweak NLO corrections**, together with OpenLoops.
- Merging for loop-induced processes.
Sherpa QCD coherence test

Study events with two hard and one further softer third jets. Angular distribution of third around second probes colour coherence:

\[\eta_2 \text{ central} \quad \eta_2 \text{ forward} \]

CMS, \[\sqrt{s} = 7 \text{ TeV} \], jet 2–3 correlation, \(0.8 < |\eta_2| < 2.5 \)

PYTHIA/Herwig does not quite describe data, whereas Sherpa fares much better.
Recent news:

- DIRE shower (see below).
- UNNLOPS - first results on NNLO merging.
- On-the-fly scale variations of NLO ME + PS. ME observables through interpolating grids (ApplGrid, FastNLO, MCgrid, ...).
- Electroweak NLO corrections, together with OpenLoops.
- Merging for loop-induced processes.

Ongoing work and plans:

- Full NNLO QCD + NLO EW (for $2 \rightarrow 1$, $2 \rightarrow 2$).
- Higher-order shower (one-loop splitting functions, sub-leading colour).
- Automated N-jettiness slicing.
- **New match&merge schemes** (now 8) and options.
- **Weak showers**: $q \rightarrow qZ^0$, $q \rightarrow q'W^\pm$ (also merged).

Z/W + jets results
The Pythia distributions are normalized such that first bin fit the data.

The shower starting scale is \hat{s} for Drell-Yan and p_\perp^2 for QCD.

ATLAS data
- Drell-Yan production
- Radiation
- Combined

MC/data
- ATLAS data
- Drell-Yan production
- Radiation
- Combined

N_{jet}
- $\sigma(\geq N_{jet}), Z \rightarrow \mu^+\mu^-, p_{\perp}(\text{jet}) > 30 \text{ GeV}, |y_{\text{jet}}| < 4.4$
New match&merge schemes (now 8) and options.

Weak showers: $q \rightarrow qZ^0$, $q \rightarrow q'W^\pm$ (also merged).

Allow reweighting of rare shower branchings.

Automated parton-shower uncertainty bands.

Extended interface for external shower plugins.

Complete LHEF v3 support.

Can run Madgraph5_aMC@NLO and POWHEG BOX from within PYTHIA.

Complete Python interface.
PYTHIA 8.2 news

Reconstructed top mass, $m_W \in [75, 85]$ GeV, $p_T(\text{jets}) > 40$ GeV

- Many new colour reconnection models.
PYTHIA 8.2 news

Reconstructed top mass, $m_W \in [75, 85] \text{ GeV}$, $p_T(\text{jets}) > 40 \text{ GeV}$

- Many new colour reconnection models.
- Double onium production.
- New model for hard diffraction.
- Several new tunes; Monash new default.

Ongoing work and plans:
- $\gamma \gamma$, γp and ep.
- Total, elastic and diffractive cross sections.
- Improved showers and hadronization.
Match and merge strategies

Input from:
Madgraph5_aMC@NLO
POWHEG BOX
ALPGEN
COMIX/Sherpa
NLOJET++
JETRAD
HJETS++
BlackHat
GoSam
Helac
OpenLoops
VBFNLO
CalpHEP/CompHEP
...

CKKW
CKKW-L
MLM
UMEPS
MC@NLO
POWHEG
MENLOPS
MEPS@NLO
NL^3
UNLOPS
FxFx
NNLOPS
MiNLO
UN^2LOPS
MIN^2LOPS

Intense activity, no “final word”.

Torbjörn Sjöstrand
Combination strategies

Big flexibility, but different baseline “world view”:

MadGraph:
- ME gen
- M&M
- Event gen

Herwig, Sherpa:
- ME gen
- M&M
- Event gen

Pythia:
- ME gen
- Les Houches
- M&M
- Event gen

Event gen = ISR + FSR + MPI + BBR + CR + hadronization + …
≠ “hadronizer”

ME and Event Generators both indispensable
VINCI: an Interleaved Antennae shower

Markovian process: no memory of path to reach current state.

Based on antenna factorization of amplitudes and phase space.

Smooth ordering fills whole phase space.

Step-by-step reweighting to new matrix elements:
\[Z \rightarrow Zj \rightarrow Zjj \rightarrow Zjjj \] (also Sudakov), e.g.
\[W = \frac{|M_{Zj}|^2}{\sum_i a_i |M_Z|^2_i} \]

Replaces PYTHIA normal showers; recent release.
Joint Sherpa/PYTHIA development, but separate implementations, means technically well tested.

“Midpoint between dipole and parton shower”, dipole with emitter & spectator, but not quite CS ones: unified initial–initial, initial–final, final–initial, final–final.

Soft term of kernels in all dipole types is less singular

\[
\frac{1}{1 - z} \to \frac{1 - z}{(1 - z)^2 + \frac{p^2}{M^2}}
\]
Apologies: will not cover

- **High Energy Jets (HEJ):** BFKL-inspired description of well-separated multijets, with approximate matrix elements and virtual corrections.
- **Deductor:** improved handling of colour, partitioned dipoles, all final partons share recoil, q^2/E evolution variable.
- **Geneva:** Soft Collinear Effective Theory resummed (exclusive) n-jet rates as starting point for showers.
- **Ariadne:** first dipole parton shower program.
- **DIPSY:** evolution and collision of dipoles in transverse space.
- **revived Fritiof:** overlayed modified pp collisions to model pA.
- **EPOS:** pp/pA/AA, MPI + strings, saturation, thermalized core separate from corona, hydrodynamical evolution.
- **DPMJET, QGSJET, SIBYLL:** other pp/pA/AA/cosmic ray.
- ...
Summary and Outlook

- Increased ME calculational capability: legs and loops.
- Match and merge approaches still steadily developing. Generators typically offer several options. Spread between approaches one measure of uncertainty.
- Continued/increased interest in parton shower development, with each generator offering several options.
- Automated uncertainty bands for scale choices etc.
- Many challenges remaining in soft physics, pA, AA: diffraction, colour reconnection, collective effects, ...
- Generators have gone from fringe activity for a few to a mainstream part of phenomenology research.
Thank You!