Higgs Boson Results from the LHC Run-2

Jonas Strandberg (KTH)
on behalf of the ATLAS and CMS collaborations
Introduction

- After the Higgs discovery in 2012, the emphasis shifted towards measuring the properties of this new particle.
 - The mass, the only free parameter in the Higgs sector in the SM.
 - The width, very challenging as the intrinsic width around 4 MeV.
 - Spin and parity, is it 0^+ as expected in the SM?
 - Couplings, several models for physics beyond the SM predict (small) deviations in the couplings for the Higgs boson. Not covered in this talk.

- This talk will review the latest results using the Run 2 dataset.
 - Comparing this with the Run 1 results, in most cases the analysis strategy is following closely what was done in Run 1.
 - Increased collision energy (13 TeV) means an increased cross section for signal and background, with the most significant gain for processes involving heavy particles like multiple top quarks.
 - The luminosity ($\sim 3 \text{ fb}^{-1}$) from the first year of Run 2 means that most results are not competitive with the Run 1 results yet.
• Given the mass of 125 GeV, we know the branching fractions from theory.

• Several production modes of the Higgs boson possible at the LHC, sometimes with associated particles.

 - Highlighted production and decay modes will be mentioned in this talk.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Branching ratio [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow bb$</td>
<td>57.5 ± 1.9</td>
</tr>
<tr>
<td>$H \rightarrow WW$</td>
<td>21.6 ± 0.9</td>
</tr>
<tr>
<td>$H \rightarrow gg$</td>
<td>8.56 ± 0.86</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>6.30 ± 0.36</td>
</tr>
<tr>
<td>$H \rightarrow cc$</td>
<td>2.90 ± 0.35</td>
</tr>
<tr>
<td>$H \rightarrow ZZ$</td>
<td>2.67 ± 0.11</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>0.228 ± 0.011</td>
</tr>
<tr>
<td>$H \rightarrow Z\gamma$</td>
<td>0.155 ± 0.014</td>
</tr>
<tr>
<td>$H \rightarrow \mu\mu$</td>
<td>0.022 ± 0.001</td>
</tr>
</tbody>
</table>
Run 1 and Run 2 Datasets

- Essentially three years of data taking used in analyses covered here:
 - 2011, at 7 TeV, with $\int \mathcal{L} \approx 5 \text{ fb}^{-1}$ for analysis.
 - 2012, at 8 TeV, with $\int \mathcal{L} \approx 20 \text{ fb}^{-1}$ for analysis.
 - 2015, at 13 TeV, with $\int \mathcal{L} \approx 3 \text{ fb}^{-1}$ for analysis.

- The higher collision energy in Run 2 leads to an increase of σ for both signal and backgrounds.

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{s}=7 \text{ TeV}$</th>
<th>$\sqrt{s}=8 \text{ TeV}$</th>
<th>$\sqrt{s}=13 \text{ TeV}$</th>
<th>Ratio 13/8 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggH</td>
<td>15.3 pb</td>
<td>19.4 pb</td>
<td>44.1 pb</td>
<td>2.27</td>
</tr>
<tr>
<td>VBF</td>
<td>1.25 pb</td>
<td>1.6 pb</td>
<td>3.8 pb</td>
<td>2.38</td>
</tr>
<tr>
<td>ttH</td>
<td>88.6 fb</td>
<td>133 fb</td>
<td>507 fb</td>
<td>3.81</td>
</tr>
<tr>
<td>tt</td>
<td>177 pb</td>
<td>253 pb</td>
<td>832 pb</td>
<td>3.29</td>
</tr>
</tbody>
</table>
The H→ZZ*→4ℓ Channel in Run I

- Look for two pairs of leptonically decaying Z bosons, one off-shell.
 - Invariant mass of the 4 leptons should peak at the Higgs boson mass.
 - Very clean channel, but statistics limited, main background from SM ZZ production.
 - Use data (Z→ℓℓ, J/ψ) for calibration of energy and momentum of leptons.

ATLAS

H → ZZ* → 4ℓ

\[\sqrt{s} = 7 \text{ TeV}: \int \text{Ldt} = 4.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 8 \text{ TeV}: \int \text{Ldt} = 20.3 \text{ fb}^{-1} \]

CMS

\[\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} ; \sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^{-1} \]

The Higgs Boson Channel in Run I

- The Higgs boson can decay to a pair of photons through a loop of heavier particles.
 - Low branching ratio, but good signal to background and invariant mass of the two photons should peak at the Higgs boson mass.

- To increase the sensitivity, events are divided into categories according to associated particles from the production mode and the quality of the photons.
 - When combining categories, effective S/(S+B) ratio is taken into account.

- Main backgrounds from SM γγ production and γj production.

Signal strengths in CMS γγ event categories:

\[\hat{\mu}_{\text{combined}} = 1.14^{+0.26}_{-0.23} \]
[\(m_H = 124.7 \text{ GeV} \)]

• The Higgs boson signal clearly visible on top of the continuous $\gamma\gamma$ background. Background can be extracted from a fit to the sidebands.

• Mass peak with events weighted according to their expected S and B:

\[\hat{\mu} = 1.14 \pm 0.26 \]
\[\hat{m}_H = 124.70 \pm 0.34 \text{ GeV} \]

[Graphs and data from ATLAS and CMS showing signal and background distributions with mass peaks and fit results.]
The Higgs Boson Mass

- The Higgs boson mass is estimated from a combination of the four results in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels for ATLAS and CMS.
 - The four measurements compatible with a p-value of 10%.
- The total systematic uncertainty on the combined Higgs boson mass is dominated by the contribution from the photon energy scale.

Phys. Rev. Lett. 114, 191803
The Higgs Boson Mass

ATLAS and CMS

LHC Run 1

ATLAS $H \rightarrow \gamma\gamma$

CMS $H \rightarrow \gamma\gamma$

ATLAS $H \rightarrow ZZ \rightarrow 4l$

CMS $H \rightarrow ZZ \rightarrow 4l$

ATLAS+CMS $\gamma\gamma$

ATLAS+CMS $4l$

ATLAS+CMS $\gamma\gamma+4l$

Combined ATLAS and CMS best estimate of the Higgs boson mass:

$m_H = 125.09 \pm 0.24$ GeV (uncertainty dominated by statistical component).

Phys. Rev. Lett. 114, 191803
• Limited luminosity in 2015 compared to Run 1 means that the results for the traditional Higgs channels are still significantly less sensitive in Run 2.

Higgs Boson Results from the LHC Run-2

Higgs Boson Results from the LHC Run-2
• ATLAS seeing a downward fluctuation in the yield in the signal region for both the \(H \to ZZ^* \to 4\ell \) and the \(H \to \gamma \gamma \) channels.

 - In Run 1 there was instead a slight excess compared to SM expectations in both channels.
 - The \(H \to \gamma \gamma \) channel still to make use of the full event categorisation in Run 2.
• Look for pair of leptons and high E_T^{miss}.
 - To cope with ttbar background, divide analysis according to jet multiplicity.
• High BR, good S/B, poor mass resolution.
• Uncertainty dominated by theoretical knowledge of the WW background.

J. High Energy Phys. 01 (2014) 096

The Higgs Boson Width

- In the standard model, $\Gamma_H \sim 4.1$ MeV (for $m_H = 125$ GeV).
 - Limited by the experimental resolution, ~ 1-2%.
 - Direct upper limit on $\Gamma_H < 1.7$ GeV (CMS).

- The high mass region ($>2m_V$, with $V=W,Z$) is sensitive to off-shell Higgs boson production and background interference effects.

- Limit on Γ_H under the assumptions:
 - $q \sim m_H$ (on shell) $\to \sigma \sim (\text{couplings})/\Gamma_H$
 - $q >> m_H$ (off shell) $\to \sigma \sim (\text{couplings})$
 - Ratio $\sim \Gamma_H$.

- Negative interference with $gg\to ZZ$ taken into account.

- Results derived using both the $H\to ZZ$ and the $H\to WW$ channels.
The Higgs Boson Width

- Limits $\Gamma_H < 22.7$ MeV (ATLAS) and $\Gamma_H < 26$ MeV (CMS) derived assuming no change in couplings and no new physics at high mass.

- Analyses can eventually probe off-shell couplings as a function of 4ℓ mass.

ATLAS

$H \to ZZ \to 4\ell$

- Data
- SM (stat \oplus syst)
- Total ($\mu_{\text{off-shell}}=10$)
- $gg+VBF \to (H^* \to ZZ)$
- Background $qq\to ZZ$
- Background $Z+\text{jets}, \tau$

CMS

19.7 fb$^{-1}$ (8 TeV) + 5.1 fb$^{-1}$ (7 TeV)

- Observed
 - $\Gamma_H=10\times\Gamma_H^{\text{SM}}$
 - $\Gamma_H=10\times\Gamma_H^{\text{SM}}$, $f_{\lambda_{\phi}}=2\times10^{-4}$
 - $f_{\lambda_{\phi}}=5\times10^{-3}$, $\mu_{VVH}=0$
 - $f_{\lambda_{\phi}}=4.5\times10^{-4}$, $\phi_{\lambda_{\phi}}=\pi$

Graphs:

- Events / 60 GeV
- $m_{4\ell}$ (GeV)
- Events / 30 GeV
- $m_{4\ell}$ [GeV]

The Spin and Parity of the Higgs Boson

Jonas Strandberg

- Test various alternative spin-parity options against the SM hypothesis $J^P = 0^+$ using angular and kinematic distributions in Higgs decays to diboson final states.
 - $H \rightarrow \gamma\gamma$ (sensitivity to 2^+, excludes spin 1).
 - $H \rightarrow ZZ^* \rightarrow 4l$ (sensitivity to all spin/parity).
 - $H \rightarrow WW^* \rightarrow l\ell\nu\nu$ (sensitivity to spin 1 and 2).

Higgs Boson Results from the LHC Run-2

• All pure alternative spin-parity hypotheses are strongly disfavoured compared to the SM 0^{+} scenario.
 - With the larger dataset foreseen in Run 2 expect to be sensitive to various mixing scenarios, e.g. with small anomalous J^{P} admixture.
Differential cross-sections for quantities like $p_T(H)$, $|y_H|$ and jet multiplicity, unfolded to the particle level, have also been measured.

- Statistical uncertainties (23%-75%) still dominate all the differential measurements.
• ATLAS and CMS recently released the first differential measurements in the $H \rightarrow WW$ channel.

![Graph showing differential cross sections in ATLAS and CMS channels.](image)

ATLAS $gg \rightarrow H$
- data, tot. unc.
- sys. unc.

CMS
- Data
- Statistical uncertainty
- Systematic uncertainty
- Model dependence
- ggH (POWHEGv2+JHUGen) + XH
- ggH (HRos) + XH
- $XH = VBF + VH$

$\sqrt{s} = 8\text{ TeV}, 20.3\text{ fb}^{-1}$

$H \rightarrow WW \rightarrow e\nu\mu\nu$

![Graph showing ratios to NNLOPS and HRes+XH.](image)

arXiv:1604.02997

Higgs Boson Results from the LHC Run-2
The $H \rightarrow \tau \tau$ Channel in Run I

- The most sensitive of the fermionic Higgs boson decay modes.
 - Events classified in categories depending on decays of the two τ leptons.
- Analysis also binned in jet multiplicity and the p_T of the leptons.

JHEP 04 (2015) 117

J. High Energy Phys. 05 (2014) 104
• The ttH production mode is important to directly probe the coupling between the Higgs boson and the top quark.
 - Crucial for probing for new particles contributing to the loops in the Higgs boson production or decay.

• Very rich experimental signature, depending on the decay of the top quarks and the Higgs boson.
 - Critical to model the ttbar background, in regions of phase-space that are not simple.
- Higgs boson decays to WW, ZZ or $\tau\tau$ can be probed in multilepton final states.
 - For example 3 leptons, or requiring a pair of same-charge leptons.
 - Can additionally require b-tagged jets to further increase the signal to background.
• Even combining the results for all different ttH channels, the observed significance in Run 1 was only a few standard deviations.
 - Still an important input to determining the Higgs boson couplings.
• Below are a summary of the results in the $\gamma\gamma$, bb and various multi-lepton final states, and the results when combining all ttH channels together.
• The ttH channels get a boost by almost a factor of 4 in LHC Run 2.
 - So far studied $H \rightarrow bb$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW$, each then gets divided into multiple sub-channels depending on the decays of the two W bosons from the top quark decays and the potential additional W bosons from the Higgs decay.
• So far all results consistent with the standard model.
 - Slight deficits in data for the analyses targeting $H \to bb$ decays.
 - Similar sensitivity as with the full Run 1 dataset.
Conclusions

• From the Run 1 data, all Higgs boson properties are consistent with the expectations from the standard model:
 - The spin and parity confirmed to be according to the SM.
 - The mass, not predicted by the SM, is measured to a precision of a few ‰.
• A combination of all the results in the various Higgs boson channels can be used to determine the Higgs boson couplings to other particles.
 - You will hear much more about that in the next talk by Silvio!
• The 2015 data does not have the sensitivity of Run 1 but have been used by ATLAS and CMS to re-establish the analysis of the Higgs boson.
 - The channel that gains the most from the increased collision energy, ttH production, start to have comparable sensitivity to Run 1 already.
• With the 2016 data (around 20-25 fb⁻¹) the sensitivity of all analyses will significantly improve compared to the Run 1 results.
 - Just waiting for more data now. Very encouraging start so far this year!
Backup
Both experiments also define multi-variate discriminants to further increase the separation between the signal and the background.

- Discriminant values for events passing the analysis selections shown below.
• The $H \rightarrow bb$ decay channel has the highest branching ratio, but is swamped by SM bb production at the LHC.

 - Make use of the rarer production modes, where the associated particles give additional handles for background rejection.

 - Tagging efficiency for b-quarks and jet-jet invariant mass resolution critical.

ATLAS

$\sqrt{s} = 7$ TeV | $L dt = 4.7$ fb$^{-1}$

2 lep., 2 jets, 2 tags

$p_T^F \gtrsim 120$ GeV

CMS

19.8 fb$^{-1}$ (8 TeV)

Category 4

- Data
- Fitted signal ($m_V = 125$ GeV)
- Bkg. + signal

- Bkg.
- QCD

JHEP01(2015)069

• Higgs boson decays to $\gamma\gamma$ suffers from low statistics due to the small branching fraction but gives a very clean signal.
 - Expected to become an increasingly important channel in Run 2 and beyond.

J. High Energy Phys. 09 (2014) 087
Differential Distributions

- Differential cross-sections for quantities like $p_T(H)$, $|y_H|$ and jet multiplicity, unfolded to the particle level, have also been measured.
 - Statistical uncertainties (23%-75%) still dominate all the differential measurements.