

#### a Tool for Making Systematic Use of Simplified Models Results

#### **Wolfgang Waltenberger**

**HEPHY Vienna** 

In collaboration with the SModelS group S. Kraml, S. Kulkarni, U. Laa, A. Lessa, W. Magerl, D. Proschofsky-Spindler

#### **LHCP 2016**

Lund, Sweden, 13 – 18 June 2016

A huge number of searches for BSM physics has been performed by CMS and ATLAS:



CMS, 8 TeV results SUSY, ICHEP 2014

A huge number of searches for BSM physics has been performed by CMS and ATLAS:



ATLAS
7 + 8 + 13
TeV
SUSY
March 2016
(incomplete!)

A huge number of searches for BSM physics has been performed by CMS and ATLAS:  $pp \to \tilde{q}\tilde{q}, \quad \tilde{q} \to t\bar{t} \tilde{\chi}_{1}^{0}$ Moriond 2016



CMS & ATLAS 13 TeV

Yes, in addition to all the null results we see mild excesses e.g. in the 750 GeV di-photons:



## Null results for BSM searches are typically presented as:

#### Upper Limit (UL) maps:



(ATLAS SUSY-2013-09)

#### Efficiency maps:



(CMS SUS-12-024)



## a tool for making systematic use of simplified models null results





#### 1) Decomposition of a fundamental model



Input: SLHA file (mass spectrum, BRs) or LHE file (parton level)

Currently the model must have a **Z**<sub>2</sub> symmetry

The decomposition produces a set of simplified model topologies (dubbed "elements")

# How squark topology association using section usin the section using section using section using section using sec

#### works:

#### Simplified Model Topology:



#### Each topology is described by:

- Topology shape + final states
- BSM masses
- $\cdot \sigma x BR$

We (currently) ignore spin, color, etc of the BSM particles

It is model independent, there is no reference to the original model

## HOW squark topology section using a section us

#### works:

#### Simplified Model Topology:



Soft particles are ommitted:

$$\begin{array}{c|c}
M_j & M_j - \epsilon \\
\hline
P_j & P_{j+1} \\
\hline
P_{j+2} & P_{j+3} \\
\hline
\end{array}$$

$$\begin{array}{c|c}
M_j - \epsilon \\
\hline
P_j & P_{j+3}
\end{array}$$

Invisible final states are grouped into effective LSPs:



### works:

weight  $\times \epsilon_2$ 

 $= \sigma \times BR \times \epsilon$ 

(Theory Prediction)

weight  $\times \epsilon_3 + 0$ 

### 2) Computation of predicted signal strength:

For efficiency map results we have signal efficiencies for various "elements", and we can add them together:





Experimental Result (UL)

Decomposition Elements:

m(g) [GeV]

### works:

### 2) Computation of predicted signal strength:

**Upper limit results** we cannot add up:

 $\widetilde{g}\widetilde{g}$  production,  $\widetilde{g} \rightarrow tt + \widetilde{\chi}^0$ ,  $m(\widetilde{q}) >> m(\widetilde{g})$ 

0 lepton + 3 b-jets channel

1000

800

600

400





## 3) Comparison of predicted signal strengths with experimental result:



Upper Limits

Upper Limit Results:

Predicted signal strength =  $\sigma$  x BR Experimental result:  $\sigma_{UL}$ 

• Efficiency Map Results:

Predicted signal strength =  $\sum \sigma x BR$   $x \varepsilon$ Experimental result:  $\sigma_{UL} = N_{UL} / L$  from  $N_{observed}$ , expected(BG), error(BG)

- $\cdot$  r = predicted /  $\sigma_{UL}$
- Model is excluded if most constraining analysis has r > 1





#### What's in the database?

 $\sim$  30 ATLAS CONF-Notes/publications

 $\sim$  20 CMS CONF-Notes/publications



| <b>Experimental Result</b> | $\sqrt{s}$ | lumi | data type     |
|----------------------------|------------|------|---------------|
| ATLAS-CONF-2012-105        | 8          | 5.8  | upperLimit    |
| ATLAS-CONF-2012-166        | 8          | 13.0 | upperLimit    |
| ATLAS-CONF-2013-001        | 8          | 12.8 | upperLimit    |
| ATLAS-CONF-2013-007        | 8          | 20.7 | upperLimit    |
|                            |            |      |               |
| ATLAS-SUSY-2013-14         | 8          | 20.3 | upperLimit    |
| ATLAS-SUSY-2013-15         | 8          | 20.3 | efficiencyMap |
| ATLAS-SUSY-2013-15         | 8          | 20.3 | upperLimit    |
| ATLAS-SUSY-2013-16         | 8          | 20.1 | efficiencyMap |
| ATLAS-SUSY-2013-16         | 8          | 20.1 | upperLimit    |
| ATLAS-SUSY-2013-18         | 8          | 20.1 | efficiencyMap |
| ATLAS-SUSY-2013-18         | 8          | 20.1 | upperLimit    |
| ATLAS-SUSY-2013-19         | 8          | 20.3 | upperLimit    |
| ATLAS-SUSY-2013-23         | 8          | 20.3 | upperLimit    |
| ATLAS-SUSY-2014-03         | 8          | 20.3 | efficiencyMap |
| ATLAS-SUSY-2015-09         | 13         | 3.2  | upperLimit    |

| <b>Experimental Result</b> | $\sqrt{s}$ | lumi | data type     |
|----------------------------|------------|------|---------------|
| CMS-SUS-12-024             | 8          | 19.4 | efficiencyMap |
| CMS-SUS-12-024             | 8          | 19.4 | upperLimit    |
| CMS-SUS-12-028             | 8          | 11.7 | upperLimit    |
| CMS-SUS-13-002             | 8          | 19.5 | upperLimit    |
| CMS-SUS-13-004             | 8          | 19.3 | upperLimit    |
| CMS-SUS-13-006             | 8          | 19.5 | upperLimit    |
| CMS-SUS-13-007             | 8          | 19.3 | efficiencyMap |
| CMS-SUS-13-007             | 8          | 19.3 | upperLimit    |
| CMS-SUS-13-011             | 8          | 19.5 | efficiencyMap |
| CMS-SUS-13-011             | 8          | 19.5 | upperLimit    |
| CMS-SUS-13-012             | 8          | 19.5 | efficiencyMap |
| CMS-SUS-13-012             | 8          | 19.5 | upperLimit    |
| CMS-SUS-13-015             | 8          | 19.4 | efficiencyMap |
| CMS-SUS-13-015             | 8          | 19.4 | upperLimit    |
| CMS-SUS-13-019             | 8          | 19.5 | upperLimit    |
|                            |            |      |               |
| CMS-SUS-PAS-13-016         | 8          | 19.7 | upperLimit    |
| CMS-SUS-PAS-13-018         | 8          | 19.4 | upperLimit    |
| CMS-SUS-PAS-15-002         | 13         | 2.2  | upperLimit    |

We can and will (and do) extend our database by using efficiency maps produced outside the experimental collaborations (using recasting tools like MadAnalysis5)

#### **Validation**

For validating our database, we define: full model := simplified model And check if we can reproduce the official exclusion curves. When we have efficiencies, we can also check  $\sigma_{\text{UL}}$  for every point in the "mass planes":



### Physics Applications

SModelS has so far been used to:

- -) quickly identify regions of model parameter space that can easily be excluded by analyses, before employing more "heavy weight" strategies for exploring model parameter spaces.
- -) identify the most constraining analyses for a model
- -) identify topologies and regions of parameter space that CMS and ATLAS are blind to.
- -) Very quickly recast results to different models

### **Physics Applications**



### Physics Applications







D. Barducci, G. Bélanger, C. Hugonie and A. Pukhov, JHEP 1601 (2016) 050

⇒ LHC constraints on 2HDM

### **Availability**

SModelS is written entirely in python and is available here:

http://smodels.hephy.at

It uses pythia and nllfast for the computation of the cross sections.

#### **Future**

We intend to extend the functionality of SModelS in several ways:

- Extend to non-Z<sub>2</sub> / non-MET topologies
- Extend to long-lived particles (HCSP scenarios)
- Make use of likelihoods
- Make use of positive results ("excesses")

### Summary

#### **SModelS** can be used to quickly:

- Identify the most constraining topologies and analyses for a given model
- Identify the topologies missed by CMS and ATLAS
- Recast results to different scenarios
- Since it does not have to run simulations, it is very fast

#### **Limitations**:

- It is tied to the simplified models results, for upper limit maps it is overly conservative
- No simplified models results available for long decay chains
- It is only as good as its database of results

## Thanks!