

Associated top-quark pair and Higgs boson production at CMS with 13 TeV data

LHCP 2016 LARGE HADRON COLLIDER PHYSICS

Eleni Ntomari for the CMS collaboration

June 14, 2016

Outline

- tt
 t H production and decays
- Results (13 TeV)
 - $t\bar{t}H(\gamma\gamma)$
 - tTH(multileptons)
 - $-t\bar{t}H(b\bar{b})$
- Combination

Introduction

- Focus of post-discovery Higgs physics is full characterization of new particle
 - ◇ In Standard Model (SM), top-Higgs Yukawa coupling strongest $(Y_T \approx 1)$ → $t\bar{t}H$ only possibility of direct measurement
 - Experimental challenges: Small signal cross section, overwhelming background
 - Strong increase of cross section with center-of-mass energy $\sim \times 3.8$ higher cross section at 13 TeV compared to 8 TeV

tīt (NLO)	Cross section
$(m_H = 125 \text{ GeV})$	
7 TeV	89 fb
8 TeV	133 fb
13 TeV	507 fb

- Dominant background $t\overline{t} + X$
 - Similar increase in cross sections
- Luminosity of 13 TeV analyzed data 2.3 2.7 fb⁻¹
 - Equivalent to \approx 50% of 8 TeV statistics

Eleni	NTOMARI	(DESY)	
-------	---------	--------	--

tTH signature

• $t\bar{t}H$ final states combine top pair and Higgs decay signatures

- tt final state topology depends on W decay: "dileptons", "lepton+jets", "alljets"
- \diamond $t\bar{t}H(bb)$: dileptons, lepton+jets
- ♦ $t\bar{t}H(\gamma\gamma)$: dileptons, lepton+jets, alljets
- ◊ ttH(multileptons): dileptons, lepton+jets
 - leptonic decays of $H \,{\rightarrow} {\rm WW}^*,\,{\rm ZZ}^*,\,\tau\tau$

$t\bar{t}H$: knowledge from Run I (7 and 8 TeV)

- Combination of all Higgs analysis channels in ATLAS and CMS
- $\mu_{t\bar{t}H}$ dominated by $t\bar{t}H(\gamma\gamma)$, $t\bar{t}H($ multileptons), $t\bar{t}H(b\bar{b})$

	$\mu_{t\overline{t}H}$
ATLAS	$1.9^{+0.8}_{-0.7}$
CMS	$2.9^{+1.0}_{-0.9}$
Combined	$2.3^{+0.7}_{-0.6}$

tīH(bb̄) ніс-16-004

- Largest Higgs boson branching ratio
- Overwhelming background: $t\bar{t}$ +jets – irreducible: $t\bar{t} + b\bar{b} \rightarrow$ theoretically challenging
- Many jets with similar kinematics, limited mass resolution for ${\sf H} {
 ightarrow} \, b ar{b}$
- Main strategy: obtain good signal separation, constrain backgrounds

- Two categories: lepton+jets & dileptons
 - Lepton triggers and offline event selection
 - \diamond =1, =2 opposite sign leptons
 - ◊ ≥4, ≥3 jets
 - \diamond \geq 2 b-tags
 - → lepton+jets: high statistics
 - ightarrow dileptons: minimal non $t\overline{t}$ backgrounds, minimal jet combinatorics
- Classify by jets, b-tags multiplicities and boosted jets (lepton+jets) \rightarrow 13 subcategories

ELENI NTOMARI (DESY)

Number of Events / 0.4 radiar

100

80

60

40 20

1.5 1 data/MC

0.5

twist angle $\tau_{taq,taq}^{max mass}$ [radian]

1.5

2.7 fb⁻¹ (13 TeV)

tt+2b Single Top

ttV Z Total uncertainty

ttH x73.2

CMS Preliminary

-1 -0.5

$t\bar{t}H(b\bar{b})$ - Signal Separation

- For each subcategory, optimise discriminator to improve sensitivity
 - ◊ dileptons, lepton+jets:

Use Boosted Decision Tree (BDT)

◊ lepton+jets:

Use Matrix Element Method (MEM)

- $-t\bar{t}+b\bar{b}$ as background hypothesis, permute over all b-quark associations
- \rightarrow MEM as input in BDT
- \rightarrow 2D MEM+BDT analysis

Eleni Ntomari (DESY)

$t\bar{t}H(b\bar{b})$ - **Results**

- Simultaneous binned maximum likelihood fit across all categories
 - \rightarrow no significant excess, set upper limit on $\mu{=}\sigma/\sigma_{\it SM}$
 - Systematics dominated

combined best fit
$$\hat{\mu}_{obs} = -2.0^{+1.8}_{-1.8}$$

 1.7σ below SM expectation

95% CL upper Limits (UL)

Category	Observed UL	Expected UL
Lepton+jets	4.0	$4.1^{+1.8}_{-1.2}$
Dilepton	5.2	$7.7^{+3.6}_{-2.3}$
Combined	2.6	$3.6^{+1.6}_{-1.1}$

 $t\overline{t}H(\gamma\gamma)$

- Part of inclusive $H \rightarrow \gamma \gamma$ analysis
 - Diphoton selection to separate signal from background (BDT approach)
 - Event classification via mass resolution, signal/backg., production mechanism
 - ♦ Tagging of events produced by VBF, $t\bar{t}H$

• Two *ttH* categories: leptonic & hadronic tag

- Diphoton triggers and offline event selection
- $\diamond \geq 1$, 0 leptons
- $\diamond \geq 2, \geq 5$ jets
- \diamond \geq 1 b-tag
- diphoton BDT output cut

- Small branching ratio, but clean final state
- Main backgrounds:
 - \diamond irreducible: $t\bar{t} + \gamma\gamma$
 - \diamond reducible: $t\bar{t} + \gamma + jet$, $t\bar{t} + jets$
 - \rightarrow jets misidentified as isolated photons
- Challenges: suppress background, excellent $m_{\gamma\gamma}$ resolution

$t\bar{t}H(\gamma\gamma)$ - Results

Smooth fit functions, several functional forms

 $\diamond~$ fit model validation in control regions by inverting photon ID + loosened event selection

• Event interpretation as for inclusive $H \rightarrow \gamma \gamma$: search for resonance in $m_{\gamma \gamma}$

$$\hat{\mu}_{obs} = 3.8^{+4.5}_{-3.6}$$

Eleni Ntomari (DESY)

tTH(multileptons)

- Main backgrounds:
 - Irreducible (smallest): tt+V \rightarrow from MC
 - Reducible: tt+jets \rightarrow from data
- Two categories: 2 same sign leptons & >3 leptons
 - Lepton triggers and offline event selection
 - ◊ ≥4, ≥2 jets
 - \diamond \geq 1 b-tag

Sub-categories: lepton charge, presence of τ_h , lepton flavour, presence of ≥ 2 b-tags, signal/backg. bins

ttH(*multileptons*) - **Results**

- Separation of signal from $t\bar{t}$, $t\bar{t}V$ via BDTs \rightarrow categories division in signal/backg. bins
- Modelling of fake lepton backgrounds from control region relaxing lepton selection
 - Jet Mis-identification, B hadrons decay
 - Charge mis-assignment of electrons
- Combined best fit of all sub-categories

$$\hat{\mu}_{obs} = 0.6^{+1.4}_{-1.1}$$

ightarrow Slight deficit in dilepton, some excess in trilepton; no significant excess overall

ELENI NTOMARI (DESY)

ttH - Combination

- Combined fit of 3 statistically independent analysis channels: $t\bar{t}H(b\bar{b})$, $t\bar{t}H(multilepton)$ and $t\bar{t}H(\gamma\gamma)$
- Combined best fit:
- SM expectation best fit:

$$\hat{\mu}_{obs}^{tar{t}H} = 0.15^{+0.95}_{-0.81}$$
 $\hat{\mu}_{SM}^{tar{t}H} = 1.00^{+0.96}_{-0.85}$

$t\bar{t}H$ signal strength

95% CL upper limit on $\mu_{t\bar{t}H}$

ELENI NTOMARI (DESY)

TTH FROM CMS

JUNE 14, 2016 13 / 14

Summary

- Top-Higgs coupling only accessible via associated $t\bar{t}H$ production
 - Important to understand loop contributions
- ightarrow Foundation with improved analysis techniques for 13 TeV

- \rightarrow Overall in agreement with SM expectations
- \rightarrow Similar sensitivity as 8 TeV analyses
- Expected luminosity with full 2016 run: pprox25 fb $^{-1}$
 - Many more exciting results are coming !!!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG