pMSSM Studies with ATLAS and CMS

Will Fawcett, University of Oxford
On behalf of the ATLAS and CMS collaborations
14 June 2016
How do we interpret the impact of experimental searches on SUSY?
Simplified Models

- Most searches interpret results in terms of simplified models
- These consider a single production and decay process
- Not representative of more complex SUSY phenomenology

Is there a more generic way of understanding limits on SUSY?
The Phenomenological MSSM

Subset of 120 parameter MSSM

Key Constraints
- 1st gen. sfermion degenerate with corresponding 2nd gen. sfermion
- No CP violation beyond CKM
- No FCNC

- Constraints are motivated by experiments
- No assumption made about nature of SUSY breaking
- ATLAS and CMS use the 19-parameter pMSSM
- Lightest neutralino, $\tilde{\chi}_1^0$ is the LSP
Both ATLAS and CMS have produced large scale studies summarising the impact of Run-1 SUSY searches:

ATLAS: JHEP 10 (2015) 134
CMS: CMS-PAS-SUS-15-010

New today! 1606.03577 (update of PAS note)

Find points in pMSSM space: sets of parameters

Both apply relevant experimental constraints, such as:

- Heavy Flavour
- Higgs Mass
- LEP chargino
- Heavy Flavour Precision Measurement

\[b \rightarrow W^+ t \rightarrow W^- Z \rightarrow \mu^+ \mu^- \]
\[H \]
\[g-2 \]
Similarities and Differences

- Both employed flat priors to restrict the parameter space, e.g., all sparticles have mass less than 4 (3) TeV for ATLAS (CMS)

ATLAS
- Employed uniform sampling
- Sampled \(500 \times 10^6 \) points
- Dark Matter constraint: \(\Omega h^2 (\tilde{\chi}_1^0) < \text{Planck} \)
- Simulated 300k models
- Combined 22 searches

CMS
- Bayesian approach & MCMC
- Sampled \(20 \times 10^6 \) points
- No DM constraint
- Simulated 7k models
- Combined 11 searches
Results (CMS)

CMS preliminary, pMSSM

- Prior from non-DCS data
- Combined, 7 TeV
- Combined, 7 + 8 TeV
- Combined, 7 + 8 TeV, LHC Higgs data
- $\mu=0.5$
- $\mu=1.0$
- $\mu=1.5$

After CMS

7+8 TeV

Before CMS

After CMS + Higgs BR

$\log_{10}(\text{cross-section}) / \text{fb}$
Cross-section

Impact: Most probable cross-section reduced by order of magnitude

Sensitivity to models with x-section of 1 fb

\[\log_{10}(\text{cross-section}) / \text{fb} \]
Gluinos: Before LHC

- Model density (prior)
- White squares mean no models
- Similarity between the two approaches
• Impact of searches
• No models with $m(\tilde{g}) < 500$ GeV remain
Models with $m(\tilde{t}_1) < 500$ GeV are rare in the pMSSM

- Rare due to requirement $m(h) \approx 125$ GeV
- Models with light stops are still viable
Higgs to Invisibles

- If $m(\tilde{\chi}_1^0) \lesssim \frac{1}{2} m(h)$ then (invisible) $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ occurs
- Light neutralinos under threat from Higgs branching ratio constraints

Will Fawcett (University of Oxford)
Dark Matter

Key difference between the ATLAS and CMS approaches:

Constraint from PLANCK: $\Omega_{CDM} h^2 < 0.1208$

These models are not considered by ATLAS.
pMSSM: summary

Mass [GeV]
0 500 1000 1500 2000

Sparticle
$g \sim 1$
t~ 2
t~ 1
b~ 2
b$\sim q \sim 0$
$\chi \sim 0$
$\chi \sim 0$
$\chi \sim 0$
$\tau \sim 2$
$\tau \sim l \sim \pm$
$\chi \sim \pm$

ATLAS
$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

Fraction of Models Excluded
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
First interpretation of 13 TeV results

Uses ATLAS model information

- Theorists have combined 6 ATLAS 13 TeV searches
- Considerable sensitivity increase of Run-2 searches
- 1605.09502
Summary

- pMSSM captures of the phenomenology of the full MSSM
- ATLAS: random scan, CMS: Bayesian approach
- Large swathes of pMSSM parameter space untouched by searches
- Plenty of work to do in Run-2!
Backup
pMSSM and the $Z+{E_T}^{miss}$ excess

Uses ATLAS model information

- 3σ excess in Z+jets+E_T^{miss} search (ATLAS) EPJC 75, 10, 463 (2015)
- Yet no excess from a similar CMS search JHEP 04 (2015) 124
- pMSSM can provide a candidate model: study using ATLAS pMSSM models 1604.02959
Machine Learning and the pMSSM

Uses ATLAS model information

- Study done by theorists taking the ATLAS model set and using this as training for a Machine Learning Algorithm. “BSM AI project” 1605.02797
- Takes parameters of pMSSM model from SLHA input
- 93% accurate in determining if the model is excluded

True classification Prediction by classifier Difference between classification and prediction
Models Evading Run-1: ATLAS

1602.06194

- ATLAS scan of the pMSSM revealed classes of models evading searches
- Built a simplified model to emulate this class
- Optimised a search to fill gap
- See Antonia’s talk
Models Evading Run-1: CMS

- Set of “principal topologies” defined
- Most common production and decay modes
- Each colour corresponds to a different topology
- Each line a different model
The pMSSM is:

19 parameters subset of the 120 parameter MSSM

- MSSM too complex to explore directly
- Imposing following constraints:
 1. No CP violation beyond CKM
 2. No FCNC
 3. Degeneracy of $1^{st}/2^{nd}$ gen. squarks (& sleptons)
- Assume R-parity conservation
- neutralino-1 is the LSP

The pMSSM is small enough to explore with available computing resources but large enough to incorporate non-LHC constraints.
ATLAS: pMSSM Scan Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>[-4000:4000]</td>
<td>$m(\tilde{q}{1L} = \tilde{q}{2L})$</td>
<td>[200:4000]</td>
</tr>
<tr>
<td>M_2</td>
<td>[-4000:-70], [70:4000]</td>
<td>$m(\tilde{u}_R = \tilde{c}_R)$</td>
<td>[200:4000]</td>
</tr>
<tr>
<td>M_3</td>
<td>[200:4000]</td>
<td>$m(\tilde{d}_R = \tilde{s}_R)$</td>
<td>[200:4000]</td>
</tr>
<tr>
<td>μ</td>
<td>[-4000:-80], [80:4000]</td>
<td>$m(\tilde{\nu}_3L)$</td>
<td>[100:4000]</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>[1:60]</td>
<td>$m(\tilde{b}_R)$</td>
<td>[100:4000]</td>
</tr>
<tr>
<td>M_A</td>
<td>[100:4000]</td>
<td>$m(\tilde{t}_R)$</td>
<td>[100:4000]</td>
</tr>
<tr>
<td>A_τ</td>
<td>[-4000:4000]</td>
<td>$m(\tilde{e}_L = \tilde{\mu}_L)$</td>
<td>[90:4000]</td>
</tr>
<tr>
<td>A_b</td>
<td>[-4000:4000]</td>
<td>$m(\tilde{e}_R = \tilde{\mu}_R)$</td>
<td>[90:4000]</td>
</tr>
<tr>
<td>A_t</td>
<td>[-8000:8000]</td>
<td>$m(\tilde{\tau}_L)$</td>
<td>[90:4000]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$m(\tilde{\tau}_R)$</td>
<td>[90:4000]</td>
</tr>
</tbody>
</table>

Table: pMSSM parameter scan ranges. Note mass units are in GeV.

Note, the upper bound of 4 TeV forces all sparticles to be below that limit and we therefore do not explore parts of the pMSSM where most particles are heavy, i.e. split SUSY like scenarios.
ATLAS: Non-ATLAS Search Constraints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(h))</td>
<td>124–128 GeV</td>
</tr>
<tr>
<td>(g_\mu - 2)</td>
<td>([-1.77 : 4.38] \times 10^{-9})</td>
</tr>
<tr>
<td>(BF(b \to s\gamma))</td>
<td>([0.269 : 0.387] \times 10^{-3})</td>
</tr>
<tr>
<td>(BF(B_d \to \mu\mu))</td>
<td>(< 9.4 \times 10^{-10})</td>
</tr>
<tr>
<td>(BF(B_s \to \mu\mu))</td>
<td>([1.6 : 4.2] \times 10^{-9})</td>
</tr>
<tr>
<td>(BF(B^+ \to \tau\nu\tau))</td>
<td>([64 : 161] \times 10^{-6})</td>
</tr>
<tr>
<td>(\Gamma_{\text{invis.}}(Z))</td>
<td>(< 2,\text{MeV})</td>
</tr>
<tr>
<td>(\Delta\rho)</td>
<td>([-0.0005 : 0.0017])</td>
</tr>
<tr>
<td>Relic density</td>
<td>(\Omega h^2 < \text{Planck} + 10%)</td>
</tr>
<tr>
<td>Direct SI</td>
<td>(< 4\times\text{LUX})</td>
</tr>
<tr>
<td>Direct SD, p</td>
<td>(< 4\times\text{COUPP})</td>
</tr>
<tr>
<td>Direct SD, n</td>
<td>(< 4\times\text{Xenon})</td>
</tr>
<tr>
<td>Charged sparticles</td>
<td>(> 100,\text{GeV})</td>
</tr>
<tr>
<td>Chargino</td>
<td>(m(\tilde{\nu}) > 160,\text{GeV}) and (\Delta m(\tilde{\chi}^\pm_1, \tilde{\chi}^0_1) > 2,\text{GeV})</td>
</tr>
</tbody>
</table>

- Use 2\(\sigma\) union of expt.+theory uncertainty everywhere, ex. \(g - 2\)
- For DM measurements, \(\sigma\) scaled down by a factor of 4 to account for nucleon form factor uncertainties
- Planck limit is upper bound only, models would be very different if lower bound applied
- \(m(h)\) centered on 126 GeV (ATLAS value at time of model generation). Results insensitive to small change.
- We remove models outside the ranges and treat any model inside on equal footing.
ATLAS: Sampling by LSP type

<table>
<thead>
<tr>
<th>LSP type</th>
<th>Definition</th>
<th>Sampled</th>
<th>Simulated Number</th>
<th>Simulated Fraction</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Bino-like’</td>
<td>(N_{11}^2 > \max(N_{12}^2, N_{13}^2 + N_{14}^2))</td>
<td>480 \times 10^6</td>
<td>104,201</td>
<td>35%</td>
<td>1/24</td>
</tr>
<tr>
<td>‘Wino-like’</td>
<td>(N_{12}^2 > \max(N_{11}^2, N_{13}^2 + N_{14}^2))</td>
<td>{ 20 \times 10^6 }</td>
<td>80,239</td>
<td>26%</td>
<td>1</td>
</tr>
<tr>
<td>‘Higgsino-like’</td>
<td>((N_{13}^2 + N_{14}^2) > \max(N_{11}^2, N_{12}^2))</td>
<td>{ 126,769 }</td>
<td>126,769</td>
<td>39%</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>500 \times 10^6</td>
<td>311,209</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Categorisation of the 311,209 models by the type of the LSP

• Split according to the neutralino mixing matrix parameters \(N_{ij} \)
 - first index indicates the neutralino mass eigenstate
 - second indicates its nature in the lexicographical order \((\tilde{B}, \tilde{W}, \tilde{H}_1, \tilde{H}_2)\)
ATLAS: Resulting model distributions

Model distributions after other experimental and theoretical constraints, but before ATLAS searches

- Relic density constraint shapes these distributions
- E.g. two spikes in neutralino distribution for bino-LSP models “Z and h funnels”
ATLAS: Searches included

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Reference</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ℓ, 2-6 jets</td>
<td>ATLAS-SUSY-2013-02</td>
<td></td>
</tr>
<tr>
<td>0ℓ, 7-10 jets</td>
<td>ATLAS-SUSY-2013-04</td>
<td></td>
</tr>
<tr>
<td>1ℓ, 2-6 jets</td>
<td>ATLAS-SUSY-2013-20</td>
<td></td>
</tr>
<tr>
<td>$1-2\tau$, jets</td>
<td>ATLAS-SUSY-2013-10</td>
<td>Inclusive</td>
</tr>
<tr>
<td>2ℓ SS/3ℓ</td>
<td>ATLAS-SUSY-2013-09</td>
<td></td>
</tr>
<tr>
<td>3 b-jet</td>
<td>ATLAS-SUSY-2013-18</td>
<td></td>
</tr>
<tr>
<td>Exotics mono-jet</td>
<td>ATLAS-EXOT-2013-13</td>
<td></td>
</tr>
<tr>
<td>0ℓ, stop</td>
<td>ATLAS-SUSY-2013-16</td>
<td></td>
</tr>
<tr>
<td>1ℓ, stop</td>
<td>ATLAS-SUSY-2013-15</td>
<td>Third generation</td>
</tr>
<tr>
<td>2ℓ, stop</td>
<td>ATLAS-SUSY-2013-19</td>
<td></td>
</tr>
<tr>
<td>Stop to charm, monojet</td>
<td>ATLAS-SUSY-2013-21</td>
<td></td>
</tr>
<tr>
<td>Stop with Z boson</td>
<td>ATLAS-SUSY-2013-08</td>
<td></td>
</tr>
<tr>
<td>Two b-jet</td>
<td>ATLAS-SUSY-2013-05</td>
<td></td>
</tr>
<tr>
<td>$tb+\text{MET},\text{stop}$</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>ℓh, electroweak</td>
<td>ATLAS-SUSY-2013-23</td>
<td></td>
</tr>
<tr>
<td>2ℓ, electroweak</td>
<td>ATLAS-SUSY-2013-11</td>
<td>Electroweak</td>
</tr>
<tr>
<td>2τ, electroweak</td>
<td>ATLAS-SUSY-2013-14</td>
<td></td>
</tr>
<tr>
<td>3ℓ, electroweak</td>
<td>ATLAS-SUSY-2013-12</td>
<td></td>
</tr>
<tr>
<td>4ℓ</td>
<td>ATLAS-SUSY-2013-13</td>
<td></td>
</tr>
<tr>
<td>Disappearing Track</td>
<td>ATLAS-SUSY-2013-01</td>
<td></td>
</tr>
<tr>
<td>Long-lived sparticles</td>
<td>ATLAS-SUSY-2013-22</td>
<td>Other</td>
</tr>
<tr>
<td>$H/A \rightarrow \tau^+\tau^-$</td>
<td>ATLAS-HIGG-2013-31</td>
<td></td>
</tr>
</tbody>
</table>
CMS: Searches included

<table>
<thead>
<tr>
<th>Analysis</th>
<th>\sqrt{s} [TeV]</th>
<th>L [fb$^{-1}$]</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic HT + MHT search [46]</td>
<td>7</td>
<td>4.98</td>
<td>counts</td>
</tr>
<tr>
<td>Hadronic HT + MET + b-jets search [47]</td>
<td>7</td>
<td>4.98</td>
<td>counts</td>
</tr>
<tr>
<td>Leptonic search for EW prod. of $\tilde{\chi}^0, \tilde{\chi}^{\pm}, \tilde{\ell}$ [48]</td>
<td>7</td>
<td>4.98</td>
<td>counts</td>
</tr>
<tr>
<td>Hadronic HT + MHT search [49]</td>
<td>8</td>
<td>19.5</td>
<td>counts</td>
</tr>
<tr>
<td>Hadronic MT2 search [50]</td>
<td>8</td>
<td>19.4</td>
<td>χ^2</td>
</tr>
<tr>
<td>Hadronic HT + MET + b-jets search [51]</td>
<td>8</td>
<td>19.4</td>
<td>binary</td>
</tr>
<tr>
<td>Monojet searches [52, 53]</td>
<td>8</td>
<td>19.4</td>
<td>counts</td>
</tr>
<tr>
<td>Hadronic stop search [54]</td>
<td>8</td>
<td>19.4</td>
<td>counts</td>
</tr>
<tr>
<td>Opposite sign di-lepton (OS ll) search [55] (count experiment only)</td>
<td>8</td>
<td>19.4</td>
<td>counts</td>
</tr>
<tr>
<td>Like-sign di-lepton (LS ll) search [56] (only channels w/o 3rd lepton veto)</td>
<td>8</td>
<td>19.5</td>
<td>counts</td>
</tr>
<tr>
<td>Leptonic search for EW prod. of $\tilde{\chi}^0, \tilde{\chi}^{\pm}, \tilde{\ell}$ [57] (only ss, 3l, and 4l channels)</td>
<td>8</td>
<td>19.5</td>
<td>counts</td>
</tr>
<tr>
<td>Combination of 7 TeV searches</td>
<td>7</td>
<td>-</td>
<td>binary</td>
</tr>
<tr>
<td>Combination of 8 TeV searches</td>
<td>8</td>
<td>-</td>
<td>binary</td>
</tr>
<tr>
<td>Combination of 7 and 8 TeV searches</td>
<td>7,8</td>
<td>-</td>
<td>binary</td>
</tr>
</tbody>
</table>
CMS prior (non-CMS constraints)

\[
p_{\text{non-DCS}}(\theta) \propto \left[\prod_j L(D_{j\text{non-DCS}}^{\text{non-DCS}}|\mu_j(\theta)) \right] p(c\tau(\tilde{\chi}^\pm) < 10\text{mm}|\theta)p(\text{theory}|\theta)p_0(\theta)
\]

\(p_0(\theta):\) flat prior in scan range:

\[
|M_1|, |M_2|, \mu \leq 3 \text{ TeV} \\
0 \leq M_3, M_A \leq 3 \text{ TeV} \\
2 \leq \tan \beta \leq 60 \\
0 \leq \tilde{Q}_{1,2}, \tilde{U}_{1,2}, \tilde{D}_{1,2}, \tilde{L}_{1,2}, \tilde{E}_{1,2}, \tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3 \leq 3 \text{ TeV} \\
-7 \text{ TeV} \leq A_t, A_b, A_\tau \leq 7 \text{ TeV}
\]
$p(\text{theory}|\theta)$ imposes the following constraints:

- Spectrum free of tachyons
- No colour or charge breaking in the scalar potential
- EWSB is consistent and Higgs potential bounded from below
- LSP is lightest neutralino

$p(c\tau(\tilde{\chi}^{\pm}) < 10\text{mm}|\theta)$ removes long-lived charginos
$L(D_{j}^{\text{non-DCS}}|\mu_{j}(\theta))$ Results from precision and pre-LHC measurements

| i | Observable $\mu_{i}(\theta)$ | Constraint $D_{i}^{\text{non-DCS}}$ | Likelihood function $L(D_{i}^{\text{non-DCS}}|\mu_{i}(\theta))$ | comment |
|-----|--------------------------------|-------------------------------------|--|---------|
| 1 | $BR(b \rightarrow s\gamma)$ [40] | $(3.43 \pm 0.21^{\text{stat}} \pm 0.24^{\text{th}} \pm 0.07^{\text{sys}}) \times 10^{-4}$ | Gaussian | reweight |
| 2 | $BR(B_{s} \rightarrow \mu\mu)$ [41] | $(2.9 \pm 0.7 \pm 0.29^{th}) \times 10^{-9}$ | Gaussian | reweight |
| 3 | $R(B_{u} \rightarrow \tau\nu)$ [40] | 1.04 ± 0.34 | Gaussian | reweight |
| 4 | Δa_{μ} [42] | $(26.1 \pm 6.3^{\exp} \pm 4.9^{\text{SM}} \pm 10.0^{\text{SUSY}}) \times 10^{-10}$ | Gaussian | reweight |
| 5 | m_{t} [43] | $173.20 \pm 0.87^{\text{stat}} \pm 1.3^{\text{sys}} \text{ GeV}$ | Two-sided Gaussian | |
| 6 | $m_{b}(m_{b})$ [44] | $4.19^{+0.18}_{-0.06} \text{ GeV}$ | Gaussian | |
| 7 | $\alpha_{S}(M_{Z})$ [44] | 0.1184 ± 0.0007 | Gaussian | |
| 8 | m_{h} | LHC: $m_{h}^{\text{low}} = 120, m_{h}^{\text{up}} = 130$ | 1 if $m_{h}^{\text{low}} \leq m_{h} \leq m_{h}^{\text{up}}$ \[0\] if $m_{h}^{\text{low}} < m_{h}$ or $m_{h} > m_{h}^{\text{up}}$ | reweight |
| 9 | μ_{h} | CMS and ATLAS in LHC RunI, Tevatron | Lilith1.01 [36, 37] | post-MCMC |
| 10 | sparticle masses | LEP [45] (via micrOMEGAs [29–31]) | 1 if allowed \[0\] if excluded | |
ATLAS: Sbottoms

\[\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0 \quad [1308.2631] \]

\(\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \)
SUSY models typically over-produce dark matter, unless there is some special mechanism to reduce the relic abundance.
Wino and Higgsino models get this special mechanism ‘for free’ as they have a compressed chargino.

\[\tilde{\chi}^\pm_1 \rightarrow \chi^0_1 + W^\pm \]

\[\Omega_{\chi_1} h^2 \]

\[\text{pMSSM: } \tilde{\chi}^0 \text{-like LSP} \]

\[\text{ATLAS: Dark Matter} \]

\[\text{Wino and Higgsino models get this special mechanism ‘for free’ as they have a compressed chargino.} \]
ATLAS: Dark Matter

pMSSM: ̄B-like LSP

Z/h funnel

Ω_{\tilde{\chi}_1^0} h^2

ATLAS
Before ATLAS Run 1

m(\tilde{\chi}_1^0) [GeV]

Z/H funnel

h^0/Z^0

\tilde{\chi}_1^0

\tilde{\chi}_1^0

Will Fawcett (University of Oxford)
Most bino-LSP models require a co-annihilator to reduce the relic abundance. This is models with mostly bino-LSPs have compressed sparticles.
ATLAS: Sleptons

Impact of electroweak searches only

ATLAS

pMSSM: $\tilde{\chi}^0_1$ LSP

$\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$

Electroweak searches

Will Fawcett (University of Oxford)
ATLAS: Bino-LSP mass distribution

ATLAS

- A Funnel
- Gaugino
- Light Flavour
- Third Gen.
- Slepton

Fraction of Models / 40 GeV

\[m(\tilde{\chi}_1^0) \text{ [GeV]} \]